Issue |
E3S Web of Conf.
Volume 485, 2024
The 7th Environmental Technology and Management Conference (ETMC 2023)
|
|
---|---|---|
Article Number | 02012 | |
Number of page(s) | 13 | |
Section | Wastewater and Resource Recovery | |
DOI | https://doi.org/10.1051/e3sconf/202448502012 | |
Published online | 02 February 2024 |
The application of artificial neural network model to predicting the acid mine drainage from long-term lab scale kinetic test
1 Water and Wastewater Research Group, Faculty of Civil and Environmental Engineering, Bandung Institute of Technology
2 Information Engineering Undergraduate Program, Department of Electrical and Information Engineering, Universitas Gadjah Mada
3 Environmental Engineering Master Program, Faculty of Civil and Environmental Engineering, Bandung Institute of Technology
4 Environmental Department, PT Kaltim Prima Coal, Indonesia
* Corresponding author: msa@itb.ac.id
Acid mine drainage (AMD) is one of the common environmental problems in the coal mining industry that was formed by the oxidation of sulfide minerals in the overburden or waste rock. The prediction of acid generation through AMD is important to do in overburden management and planning the post-mining land use. One of the methods used to predict AMD is a lab-scale kinetic test to determine the rate of acid formation over time using representative samples in the field. However, this test requires a long-time procedure and large amount of chemical reagents lead to inefficient cost. On the other hand, there is potential for machine learning to learn the pattern behind the lab-scale kinetic test data. This study describes an approach to use artificial neural network (ANN) modeling to predict the result from lab-scale kinetic tests. Various ANN model is used based on 83 weeks experiments of lab-scale kinetic tests with 100% potential acid-forming rock. The model approaches the monitoring of pH, ORP, conductivity, TDS, sulfate, and heavy metals (Fe and Mn). The overall Nash-Sutcliffe Efficiency (NSE) obtained in this study was 0.99 on training and validation data, indicating a strong correlation and accurate prediction compared to the actual lab-scale kinetic tests data. This show the ANN ability to learn patterns, trends, and seasonality from past data for accurate forecasting, thereby highlighting its significant contribution to solving AMD problems. This research is also expected to establish the foundation for a new approach to predict AMD, with time efficient, accurate, and cost-effectiveness in future applications.
© The Authors, published by EDP Sciences, 2024
This is an Open Access article distributed under the terms of the Creative Commons Attribution License 4.0, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.