Open Access
Issue
E3S Web of Conf.
Volume 485, 2024
The 7th Environmental Technology and Management Conference (ETMC 2023)
Article Number 02012
Number of page(s) 13
Section Wastewater and Resource Recovery
DOI https://doi.org/10.1051/e3sconf/202448502012
Published online 02 February 2024
  1. A. K. Jain, J. Mao, K. M. Mohiuddin, "Artificial neural networks: a tutorial," Computer,29, 31-44 (1996) [CrossRef] [Google Scholar]
  2. G. S. Simate, S. Ndlovu, "Acid mine drainage: Challenges and opportunities," J. Environ.Chem. Eng., 2(3), 1785-1803 (2014) [CrossRef] [Google Scholar]
  3. L. Sibarani, "Prediction of mine drainage quality by kinetic tests," Indones. Min. J., 9(3),32-39 (2006) [Google Scholar]
  4. A. Jain, A. M. Kumar, "Hybrid neural network models for hydrologic time series forecasting," Appl. Soft Comput., 7, 585-592 (2007) [CrossRef] [Google Scholar]
  5. K. S. More, C. Wolkersdorfer, "Application of machine learning algorithms for nonlinearsystem forecasting through analytics-A case study with mining influenced water data," Water Resour. Ind., 29, 100209 (2023) [CrossRef] [Google Scholar]
  6. G. P. Zhang, "Time series forecasting using a hybrid ARIMA and neural network model," Neurocomputing, 50, 159-175 (2003) [CrossRef] [Google Scholar]
  7. S. Hochreiter, J. Schmidhuber, "Long short-term memory," Neural Computation, 9(8),1735-1780 (1997) [CrossRef] [Google Scholar]
  8. A. Graves, "Supervised sequence labelling with recurrent neural networks," Neural Networks, 22, 37-45 (2012) [Google Scholar]
  9. Bo Zhang et al., "A novel Encoder-Decoder model based on read-first LSTM for air pollutant prediction," Science of the Total Environment, 765, 144507 (2021) [CrossRef] [Google Scholar]
  10. Z. Wang, X. Su, Z. Ding, "Long-Term Traffic Prediction Based on LSTM EncoderDecoder Architecture," in IEEE Trans. Intell. Transp. Syst., 22(10), 6561-6571 (2021) [CrossRef] [Google Scholar]
  11. R. J. Hyndman, G. Athanasopoulos, Forecasting: Principles and Practice, 2nd ed. (OTexts, Melbourne, 2018) [Google Scholar]
  12. V. Chandola, A. Banerjee, V. Kumar, "Anomaly detection: A survey," in ACM Comput.Surv., 41(3), 1-72 (2009) [CrossRef] [Google Scholar]
  13. F. T. Liu, K. M. Ting, Z. -H. Zhou, "Isolation Forest," in Proc. IEEE Int. Conf. Data Min.,Pisa, Italy, 2008, pp. 413-422 [Google Scholar]
  14. B. Barz, J. Denzler, "Deep learning on small datasets without pre-training using cosineloss," in Proc. IEEE/CVF Winter Conf. Appl. Comput. Vis., pp. 1371-1380 (2020) [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.