Issue |
E3S Web of Conf.
Volume 488, 2024
1st International Conference on Advanced Materials & Sustainable Energy Technologies (AMSET2023)
|
|
---|---|---|
Article Number | 03023 | |
Number of page(s) | 10 | |
Section | Green Buildings; Carbon Capture & Recycling of Energy Materials | |
DOI | https://doi.org/10.1051/e3sconf/202448803023 | |
Published online | 06 February 2024 |
Green synthesis approach using deep eutectic solvents to enhance the surface functional groups on porous carbon for CO2 capture
1 Research Centre for Carbon Dioxide Capture and Utilisation (CCDCU), School of Engineering and Technology, Sunway University, No. 5 Jalan Universiti, Bandar Sunway, 47500 Petaling Jaya, Selangor, Malaysia
2 Sunway Materials Smart Science & Engineering (SMS2E) Research Cluster, Sunway University, No. 5 Jalan Universiti, Bandar Sunway, 47500 Petaling Jaya, Selangor, Malaysia
3 School of Engineering, Lancaster University, Lancaster LA1 4YW, UK
* Corresponding author: farihah@sunway.edu.my
This study explores the potential of green solvents using amino acids-based deep eutectic solvents to alter surface functionality of activated carbon thus enhancing the carbon dioxide (CO2) adsorption capacity. Green solvent is prepared by mixing an amino acid (L-Arginine) with ethylene glycol to form amino acid-based deep eutectic solvents. Amino acid-based deep eutectic solvents were used to modify the surface functionalities of activated carbon derived from palm shell waste. The change in surface functional groups and surface morphology of the modified activated carbon samples were characterized by Fourier-transform infrared spectroscopy and Scanning electron microscopy-energy dispersive X-ray analysis. Then, CO2 removal performance was performed using a packed-bed CO2 adsorption reactor to evaluate CO2 breakthrough time and adsorption capacity. CO2 adsorption experiments were measured at a certain temperature (25–45°C), at a fixed feed flow rate and CO2 concentration of 200 mL/min and 15%. It was observed that modified activated carbon showed the highest breakthrough time (15.2 min) compared to raw palm shell (5.2 min) at an adsorption temperature of 25°C. CO2 breakthrough times significantly decreased with increasing adsorption temperature because of physical adsorption.
© The Authors, published by EDP Sciences, 2024
This is an Open Access article distributed under the terms of the Creative Commons Attribution License 4.0, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.