Issue |
E3S Web Conf.
Volume 500, 2024
The 1st International Conference on Environment, Green Technology, and Digital Society (INTERCONNECTS 2023)
|
|
---|---|---|
Article Number | 03019 | |
Number of page(s) | 9 | |
Section | Engineering and Technology | |
DOI | https://doi.org/10.1051/e3sconf/202450003019 | |
Published online | 11 March 2024 |
Application of Artificial Neural Networks for Predicting Relative Permeability in Talang Akar Formation
1 Department of Petroleum Engineering, Universitas Trisakti, Jakarta, Indonesia
2 Department of Petroleum Engineering, STT Minyak dan Gas, Balikpapan, Indonesia
3 Energy and Mineral Resource Engineering Department, Sejong University, Seoul, Republic of Korea
4 Department of Petroleum Engineering, Nazarbayev University, Astana, Kazakhstan
* Corresponding author: muh.taufiq@trisakti.ac.id
Relative permeability is a substantial parameter for estimating multi-phase fluid flow in porous rocks. It is a complex physical property that is influenced by the behavior and interactions between the fluid and rock phases. Relative permeability measurement of rock samples in laboratory can be carried out using steady-state or non-steady-state techniques. Permeability measurement is relatively difficult and time consuming. Because of the difficulty in measurement, empirical models are often used to estimate relative permeability or extrapolate to limited laboratory data. Artificial neural network (ANN) is a method that can be applied to obtain complex correlations of parameters that influence each other. In this study, ANN is used to predict the relative permeability of oil and water. The proposed model evaluates the relative permeability of a phase as a function of rock absolute permeability, porosity, depth, permeability of other phases and water saturation. A total of 159 relative permeability data from Talang Akar Formation were used for the training and testing processes. Based on the comparison between measured and calculated data, the correlation coefficients for relative permeability to water and oil using ANN method are 0.77 and 0.94 respectively. While those using regression analysis are 0.88 and 0.73 respectively.
© The Authors, published by EDP Sciences, 2024
This is an Open Access article distributed under the terms of the Creative Commons Attribution License 4.0, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.