Open Access
Issue |
E3S Web Conf.
Volume 500, 2024
The 1st International Conference on Environment, Green Technology, and Digital Society (INTERCONNECTS 2023)
|
|
---|---|---|
Article Number | 03019 | |
Number of page(s) | 9 | |
Section | Engineering and Technology | |
DOI | https://doi.org/10.1051/e3sconf/202450003019 | |
Published online | 11 March 2024 |
- R. G. Barroeta and L. G. Thompson, “Estimation of Relative Permeability from Displacement Pressure Data,” in All Days, SPE, Apr. 2006. doi: 10.2118/99734-MS. [Google Scholar]
- C. A. Aggelopoulos and C. D. Tsakiroglou, “The effect of micro-heterogeneity and capillary number on capillary pressure and relative permeability curves of soils,” Geoderma, vol. 148, no. 1, pp. 25–34, Nov. 2008, doi: 10.1016/j.geoderma.2008.08.011. [CrossRef] [Google Scholar]
- K. Wang, J. E. Killough, and K. Sepehrnoori, “A New Upscaling Method of Relative Permeability Curves for Reservoir Simulation,” in All Days, SPE, Oct. 2009. doi: 10.2118/124819-MS. [Google Scholar]
- M. Akhlaghinia, F. Torabi, and C. W. Chan, “Effect of Temperature on Two-Phase Relative Permeabilities of Heavy Oil, Water, Carbon Dioxide, and Methane Determined by Displacement Technique,” Energy & Fuels, vol. 27, no. 3, pp. 1185–1193, Mar. 2013, doi: 10.1021/ef301248y. [CrossRef] [Google Scholar]
- J. Xu, C. Guo, R. Jiang, and M. Wei, “Study on relative permeability characteristics affected by displacement pressure gradient: Experimental study and numerical simulation,” Fuel, vol. 163, pp. 314–323, Jan. 2016, doi: 10.1016/j.fuel.2015.09.049. [CrossRef] [Google Scholar]
- M. T. Fathaddin, M. T. Malinda, O. Ridaliani, and R. S. T. Kartoatmodjo, “Teknik Reservoir 1,” Makassar, 2022. [Google Scholar]
- M. Honarpour and S. M. Mahmood, “Relative-Permeability Measurements: An Overview,” Journal of Petroleum Technology, vol. 40, no. 08, pp. 963–966, Aug. 1988, doi: 10.2118/18565-PA. [CrossRef] [Google Scholar]
- S. M. Al-Fattah, “Artificial-Intelligence Technology Predicts Relative Permeability of Giant Carbonate Reservoirs,” in All Days, SPE, Sep. 2007. doi: 10.2118/109018-MS. [Google Scholar]
- P. Xu, S. Qiu, B. Yu, and Z. Jiang, “Prediction of relative permeability in unsaturated porous media with a fractal approach,” Int J Heat Mass Transf, vol. 64, pp. 829–837, Sep. 2013, doi: 10.1016/j.ijheatmasstransfer.2013.05.003. [CrossRef] [Google Scholar]
- B. Xiao, J. Fan, and F. Ding, “Prediction of Relative Permeability of Unsaturated Porous Media Based on Fractal Theory and Monte Carlo Simulation,” Energy & Fuels, vol. 26, no. 11, pp. 6971–6978, Nov. 2012, doi: 10.1021/ef3013322. [CrossRef] [Google Scholar]
- Å. Haugen, M. A. Fernø, G. Mason, and N. R. Morrow, “The Effect of Viscosity on Relative Permeabilities Derived from Spontaneous Imbibition Tests,” Transp Porous Media, vol. 106, no. 2, pp. 383–404, Jan. 2015, doi: 10.1007/s11242-014-0406-4. [CrossRef] [Google Scholar]
- A. Almutairi and F. Le-Hussain, “Effect of Injection Rate on Oil Water Relative Permeability Accounting for Capillary Pressure and Outlet end Effects,” in Day 2 Tue, January 14, 2020, IPTC, Jan. 2020. doi: 10.2523/IPTC-20287-MS. [Google Scholar]
- S. Esmaeili, J. Modaresghazani, H. Sarma, T. Harding, and B. Maini, “Effect of temperature on relative permeability – Role of viscosity ratio,” Fuel, vol. 278, p. 118318, Oct. 2020, doi: 10.1016/j.fuel.2020.118318. [CrossRef] [Google Scholar]
- E. A. Chukwudeme, I. Fjelde, K. Abeysinghe, and A. Lohne, “Effect of Interfacial Tension on Water/Oil Relative Permeability on the Basis of History Matching to Coreflood Data,” SPE Reservoir Evaluation & Engineering, vol. 17, no. 01, pp. 37–48, Feb. 2014, doi: 10.2118/143028-PA. [CrossRef] [Google Scholar]
- M. Parvazdavani, M. Masihi, and M. H. Ghazanfari, “Experimental Investigation of Near Miscibility Effect on Relative Permeability Curves,” Jun. 2012. doi: 10.3997/2214-4609.20148908. [Google Scholar]
- E. Ehirim, “The Influence of Wettability on Relative Permeability and Oil Recovery Scheme An Integrated Well-Reservoir Steam Injection View project Three Dimensional Modeling of Enhanced Oil Recovery from Shale Reservoirs View project,” 2018, doi: 10.13140/RG.2.2.32581.09440. [Google Scholar]
- H. S. Ali, M. A. Al-Marhoun, S. A. Abu-Khamsin, and M. S. Celik, “The Effect of Overburden Pressure on Relative Permeability,” in All Days, SPE, Mar. 1987. doi: 10.2118/15730-MS. [Google Scholar]
- A. Al-Quraishi and M. Khairy, “Pore pressure versus confining pressure and their effect on oil–water relative permeability curves,” J Pet Sci Eng, vol. 48, no. 1–2, pp. 120–126, Jul. 2005, doi: 10.1016/j.petrol.2005.04.006. [CrossRef] [Google Scholar]
- S. Zou, Y. Liu, J. Cai, and R. T. Armstrong, “Influence of Capillarity on Relative Permeability in Fractional Flows,” Water Resour Res, vol. 56, no. 11, Nov. 2020, doi: 10.1029/2020WR027624. [Google Scholar]
- J. Xu, C. Guo, R. Jiang, and M. Wei, “Study on relative permeability characteristics affected by displacement pressure gradient: Experimental study and numerical simulation,” Fuel, vol. 163, pp. 314–323, Jan. 2016, doi: 10.1016/j.fuel.2015.09.049. [CrossRef] [Google Scholar]
- Q. Liu et al., “Effect of Displacement Pressure on Oil–Water Relative Permeability for Extra-LowPermeability Reservoirs,” ACS Omega, vol. 6, no. 4, pp. 2749–2758, Feb. 2021, doi: 10.1021/acsomega.0c04987. [CrossRef] [PubMed] [Google Scholar]
- B. Guler, T. Ertekin, and A. S. Grader, “An Artificial Neural Network Based Relative Permeability Predictor,” Journal of Canadian Petroleum Technology, vol. 42, no. 04, Apr. 2003, doi: 10.2118/03-04-02. [CrossRef] [Google Scholar]
- N. Silpngarmlers and T. Ertekin, “Artificial Neural Network Architectures for Predicting Two-Phase and Three-Phase Relative Permeability Characteristics,” in All Days, SPE, Sep. 2002. doi: 10.2118/77704-MS. [Google Scholar]
- S. Kalam et al., “Advancing Relative Permeability Estimation Through Data-Driven Modeling,” in Day 1 Mon, November 09, 2020, SPE, Nov. 2020. doi: 10.2118/202810-MS. [Google Scholar]
- R. Lippmann, “An introduction to computing with neural nets,” IEEE ASSP Magazine, vol. 4, no. 2, pp. 4–22, 1987, doi: 10.1109/MASSP.1987.1165576. [CrossRef] [Google Scholar]
- P. J. Snyder and M. P. Redmond, “Understanding Neural Networks. Computer Explorations. Volumes 1 and 2. M. Caudill and C. Butler. Cambridge: MIT Press, 1992,” Brain Cogn, vol. 27, no. 1, pp. 128–133, Feb. 1995, doi: 10.1006/brcg.1995.1012. [Google Scholar]
- M. T. Fathaddin et al., “Application of Artificial Neural Network to Estimate Rate of Penetration for Geothermal Well Drilling in South Sumatera,” International Journal of Emerging Technology and Advanced Engineering, vol. 13, no. 3, pp. 135–140, Mar. 2023, doi: 10.46338/ijetae0323_14. [CrossRef] [Google Scholar]
- M. Mirarab Razi, A. Arzandeh, A. Naderi, F. Mirarab Razi, and M. Ali Ghayyem, “Annular Pressure Loss while Drilling Prediction with Artificial Neural Network Modeling,” European Journal of Scientific Research, vol. 95, no. 2, p. 272-288, 2013. http://www.europeanjournalofscientificresearch.com [Google Scholar]
- S. Naganawa, R. Sato, and M. Ishikawa, “Cuttings-Transport Simulation Combined with Large-Scale-FlowLoop Experimental Results and Logging-While-Drilling Data for Hole-Cleaning Evaluation in Directional Drilling,” SPE Drilling & Completion, vol. 32, no. 03, pp. 194–207, Sep. 2017, doi: 10.2118/171740-PA. [CrossRef] [Google Scholar]
- S. S. Liew, M. Khalil-Hani, and R. Bakhteri, “An optimized second order stochastic learning algorithm for neural network training,” Neurocomputing, vol. 186, pp. 74–89, Apr. 2016, doi: 10.1016/j.neucom.2015.12.076. [CrossRef] [Google Scholar]
- S. Elkatatny, A. Al-AbdulJabbar, and K. Abdelgawad, “A New Model for Predicting Rate of Penetration Using an Artificial Neural Network,” Sensors, vol. 20, no. 7, p. 2058, Apr. 2020, doi: 10.3390/s20072058. [Google Scholar]
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.