Issue |
E3S Web Conf.
Volume 503, 2024
The 9th International Symposium on Applied Chemistry in conjuction with the 5th International Conference on Chemical and Material Engineering (ISAC-ICCME 2023)
|
|
---|---|---|
Article Number | 04002 | |
Number of page(s) | 8 | |
Section | Design Process and Chemical Engineering | |
DOI | https://doi.org/10.1051/e3sconf/202450304002 | |
Published online | 20 March 2024 |
Simulating Biogas Production Process from Palm Oil Mill Effluent for Power Generation
1 Department of Chemical Engineering, Faculty of Engineering, Universitas Indonesia, Kampus Baru UI, Depok, 16424, Indonesia
2 Department of Industrial Chemistry, Faculty of Science and Technology, Universitas Jambi, Jambi, 36361, Indonesia
3 Faculty of Animal Science, Gadjah Mada University, Indonesia
4 Research Centre for Biomass Valorization, Faculty of Engineering, Universitas Indonesia, Kampus Baru UI, Depok, 16424, Indonesia
* Corresponding author: mgozan@ui.ac.id
The rapid growth of the palm oil industry in Indonesia has made it the world's largest palm oil producer. However, this progress comes with a challenge as the industry generates Palm Oil Mill Effluent (POME), which poses an environmental threat if directly discharged into the environment. POME contains high concentrations of organic compounds that can be harnessed to produce energy in biogas through anaerobic treatment processes. This study aims to develop an efficient POME biogas production technique for large-scale power generation. The biogas production process with a capacity of 675.38 Kg/batch, 51,9 tonnes/year, and economic evaluation were simulated using SuperPro Designer v13.0. Biogas production from POME involves a series of stages employing anaerobic microorganisms for organic material decomposition, including hydrolysis, acidogenesis, acetogenesis, and methanogenesis. The simulation results indicate that the plant can produce biogas with a composition of 86.228% methane, 1.507% water, 0.059% hydrogen, 0.016% hydrogen sulfide, and 1.959% carbon dioxide within a batch time of 114 hours. The economic feasibility simulation resulted in a Net Present Value (NPV) of $553,000, Internal Return Rate (IRR) of 19.3%, and Payback Period (PBP) of 4.22 years. Those results confirm the viability of these projects.
© The Authors, published by EDP Sciences, 2024
This is an Open Access article distributed under the terms of the Creative Commons Attribution License 4.0, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.