Issue |
E3S Web Conf.
Volume 523, 2024
53rd AiCARR International Conference “From NZEB to ZEB: The Buildings of the Next Decades for a Healthy and Sustainable Future”
|
|
---|---|---|
Article Number | 01008 | |
Number of page(s) | 11 | |
Section | Innovation in Buildings Components and Technologies | |
DOI | https://doi.org/10.1051/e3sconf/202452301008 | |
Published online | 07 May 2024 |
“En-Solex”: A Novel Solar Exoskeleton for the Energy-efficiency Retrofitting of Existing Buildings
1 Department of Architecture, Built Environment and Design, Polytechnic University of Bari, Via Edoardo Orabona, 4, 70126 Bari, Italy
2 Department of Architectural Science, Toronto Metropolitan University, 350 Victoria St., Toronto, Canada
* Corresponding author: roberto.stasi@poliba.it
The energy retrofitting of the existing building stock is one of the current challenging strategic objectives on the way to the European target of climate neutrality by 2050. According to the Renovation Wave plan, around 35 million existing buildings need to be upgraded to the highest energy efficiency level by 2030, and innovative technological solutions are required to achieve this ambitious goal. This paper proposes a novel solar exoskeleton for the energy and architectural retrofitting of existing buildings, called En-Solex. The system, which consists of an external steel frame that wraps around buildings like a double skin, combines passive solar gain control (shading and greening) with high-efficiency active solar systems (PV panels) optimised for integration into existing building facades. The energy-saving potential of the system with different façade configurations is evaluated on a multi-family residential building located in a Mediterranean climate. The dynamic energy simulations show that the proposed solution can reduce the energy demand for space heating and cooling by 33.4% and 25.5% respectively. The En-Solex system integration combined with generator replacement results in a maximum heating and cooling reduction equal to 80.7% and 59.6% respectively. The surplus of electricity generated, thanks to the integration of RES, can lead to a net plus target, with the building exceeding its average annual electricity demand.
© The Authors, published by EDP Sciences, 2024
This is an Open Access article distributed under the terms of the Creative Commons Attribution License 4.0, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.