Issue |
E3S Web Conf.
Volume 523, 2024
53rd AiCARR International Conference “From NZEB to ZEB: The Buildings of the Next Decades for a Healthy and Sustainable Future”
|
|
---|---|---|
Article Number | 02001 | |
Number of page(s) | 14 | |
Section | Integration of Control and Building Automation Systems | |
DOI | https://doi.org/10.1051/e3sconf/202452302001 | |
Published online | 07 May 2024 |
Energy, economic and environmental benefits of Demand Response for improving building energy flexibility
1 University of Padova, Industrial Engineering Department, 35121 Padova PD, Italy
2 University of Padova, Energy Economics and Technology Institute “Giorgio Levi Cases”, 35121 Padova PD, Italy
3 Veil Energy S.r.l. SB, 39100 Bolzano BZ, Italy
* Corresponding author: enrico.dalcin@phd.unipd.it
The increasing penetration of intermittent renewable sources in power generation at local and building-level poses growing issues in balancing generation and demand. To avoid imbalances, it is therefore necessary to ensure adequate levels of flexibility in the building energy system. This can be done both on the generation side, through the coupling of different energy carriers (cogeneration, power-to-heat solutions) and/or the integration of storage systems, and on the demand side, through smart “demand response” programs. This paper considers a tourist facility located in central Germany as a case study to evaluate the energy, economic and environmental benefits that can be obtained from the application of appropriate demand response strategies. The electrical demand data of the facility are monitored at both aggregate and individual load levels and made available by means of a cloud platform. The facility includes two stationary combined heat and power internal combustion engines powered by natural gas and a photovoltaic system. The results show how, thanks to appropriate load management, it is possible, on the one hand, to increase the self-consumption of PV-generated energy and, on the other hand, to keep more constant the load of the engines, which can therefore operate with better efficiencies. This results in both a reduction in energy expenses and a decrease in carbon dioxide emissions attributable to the building.
© The Authors, published by EDP Sciences, 2024
This is an Open Access article distributed under the terms of the Creative Commons Attribution License 4.0, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.