Issue |
E3S Web Conf.
Volume 543, 2024
International Process Metallurgy Conference (IPMC 2023)
|
|
---|---|---|
Article Number | 01005 | |
Number of page(s) | 5 | |
Section | Mineral Processing and Coal Upgrading | |
DOI | https://doi.org/10.1051/e3sconf/202454301005 | |
Published online | 03 July 2024 |
Indonesian Tungsten Mineralogy and Processing Concept
1 Politeknik Energi dan Pertambangan (PEP) Bandung, Indonesia
2 Balai Besar Pengujian Mineral dan Batubara, Bandung, Indonesia
3 PT Timah, Tbk Bangka, Indonesia
* Corresponding author: imelda.hutabarat@esdm.go.id
Tungsten minerals which are major as Wolframite and Scheelite mineral are by-product minerals of Tin mineral known as Cassiterite. Tin minerals are mostly found in Bangka Island which is one of the islands in the Southeast Asian tin belt that makes Indonesia the largest Tin (Sn) producer in the world. This research aims to characterize the mineralogy of Tungsten and associated minerals for potential mineral processing to gain the Tungsten concentrates. The Tungsten minerals were collected from the eastern edge of Klabat Granite in Toboali District, South Bangka. The Tungsten minerals were magnetically separated up to 14000 Gauss. The magnetic and non-magnetic fractions were identified to analyze the associated mineral of Tungsten with SEM analysis. The associated minerals in the Tungsten mineralization system in Toboali were found along with Silicates, Oxides, Sulphides, and Carbonates where Silicates dominated up to 91.8% of the non-magnetic minerals while Wolframite presence up to 0.9% in the non-magnetic fraction. At magnetic fraction found that Silicates dominates also up to 84.6% while Wolframite existed at 1.1%. The results of element deportment in the non-magnetic fraction show that Tungsten is associated with iron minerals and also in liberated form. The potential Tungsten mineral is Wolframite (Fe,Mn) WO4 in the magnetic and non-magnetic fraction. Mineral locking at P100 size 18.8 μ. shows that 84.4% Wolframite was locking with 3 (three) other minerals, 10.4% locking with 2 (two) other minerals, and only 4.8% Wolframite was 100% free in the magnetic fraction while in non-magnetic fraction P100 size 31.5 μ 77.5% Wolframite was locking with 3 (three) other minerals 18.3% locking with 2 (two) other minerals and only 4.2% Wolframite was 100% free. The processing concept is to liberate Tungsten from the associated minerals either with comminution or a combination of roasting alkali and leaching process and concentrate it up to marketable Tungsten concentrates.
© The Authors, published by EDP Sciences, 2024
This is an Open Access article distributed under the terms of the Creative Commons Attribution License 4.0, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.