Issue |
E3S Web of Conf.
Volume 544, 2024
8th International Symposium on Deformation Characteristics of Geomaterials (IS-Porto 2023)
|
|
---|---|---|
Article Number | 01006 | |
Number of page(s) | 7 | |
Section | Experimental Investigations From Very Small Strains to Beyond Failure - Advances in Laboratory Testing Techniques (Equipment and Procedures) | |
DOI | https://doi.org/10.1051/e3sconf/202454401006 | |
Published online | 02 July 2024 |
Acoustic emissions during creep under triaxial compression
Technical University of Munich, TUM School of Engineering and Design, Department of Civil and Environmental Engineering, 81245 Munich, Germany
* Corresponding author: belinda.bock@tum.de
Granular materials exhibit time- and rate-dependent behaviour resulting from micromechanical processes at the scale of individual particles. Elastic energy is released during these processes and can be detected as acoustic emissions (AE). Using multistage creep tests under isotropic and anisotropic pressure on medium dense samples of dry silica sand, the relationship between the number of AE events NAE and the axial creep strain Ɛa was determined. In addition, the dependence on the mean pressure p and the deviator stress q was investigated. The experimental results show that the development of AE and axial strain during creep are qualitatively comparable. Within the creep phases both the change in Ɛa and NAE can be described by a logarithmic trend with time. The time-dependent development of both measured quantities exhibit a dependence on q. Moreover, the evolution of NAE with time also shows a pronounced increase with increasing p. A time-dependent power law can be assumed to represent the rates of NAE and the rates of Ɛa with time during creep. The exponent m of the power law is similar for all experiments performed. The initial rates of NAE and Ɛa increase with increasing p as well as increasing q/p-ratio. Finally, a linear correlation between log Ɛa and logNAE was found depending on two state parameters a and b, with a seems to be independent on the stress state.
Key words: granular material / creep / acoustic emission / triaxial testing
© The Authors, published by EDP Sciences, 2024
This is an Open Access article distributed under the terms of the Creative Commons Attribution License 4.0, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.