Issue |
E3S Web of Conf.
Volume 544, 2024
8th International Symposium on Deformation Characteristics of Geomaterials (IS-Porto 2023)
|
|
---|---|---|
Article Number | 11014 | |
Number of page(s) | 8 | |
Section | Behaviour, Characterization and Modelling of Various Geomaterials and Interfaces - Soil Stabilisation and Improvement | |
DOI | https://doi.org/10.1051/e3sconf/202454411014 | |
Published online | 02 July 2024 |
Resilient moduli characterization of cement-treated silt
1 Zachry Department of Civil and Environmental Engineering, Texas A&M University, College Station, Texas, U.S.A. 77843
2 Department of Civil and Environmental Engineering, Michigan State University, East Lansing, Michigan, U.S.A. 48824
3 U.S. Army Engineer Research and Development Center, Vicksburg, Mississippi, U.S.A. 39180
* Corresponding author: anandp@tamu.edu
The performance of a flexible pavement depends on the resilient modulus (MR) of subgrade soil. Thus, MR is a key design parameter for mechanistic-empirical pavement design of flexible pavements. Generally, the resilient modulus is determined by conducting repeated load triaxial (RLT) tests in the laboratory and has been used to characterize the subgrade soil behavior under repeated traffic loading conditions. The use of cement to stabilize natural subgrade soils is widely accepted by transportation agencies. Several research studies were conducted on the resilient behavior of cementtreated soils. However, limited research studies have been conducted on the resilient behavior of cement-treated silty soil. Therefore, the current research study assessed the resilient moduli properties of cement-treated silt. Cement-stabilized soil specimens were statically compacted and cured in a humid room for a stipulated curing period before conducting RLT tests. RLT tests were conducted on cement-treated specimens at different cement dosages and curing periods to study the effect of the cement dosage and curing time on the resilient modulus. Test results indicated that a significant improvement in performance was observed after cement treatment. The untreated soil specimens exhibited stresssoftening behavior with an increase in deviator stress, whereas the cement-treated specimens exhibited stress-hardening behavior. The resilient modulus was increased with an increase in cement dosage. Regression analyses were conducted on RLT test results using three-parameter universal model and model parameters were determined. It was observed that the three-parameter universal model exhibited an excellent fit with experimental data.
Key words: resilient modulus / silt soil / cement stabilization / resilient strain / permanent strain
© The Authors, published by EDP Sciences, 2024
This is an Open Access article distributed under the terms of the Creative Commons Attribution License 4.0, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.