Open Access
Issue
E3S Web of Conf.
Volume 544, 2024
8th International Symposium on Deformation Characteristics of Geomaterials (IS-Porto 2023)
Article Number 11014
Number of page(s) 8
Section Behaviour, Characterization and Modelling of Various Geomaterials and Interfaces - Soil Stabilisation and Improvement
DOI https://doi.org/10.1051/e3sconf/202454411014
Published online 02 July 2024
  1. AASHTO “Mechanistic-Empirical Pavement Design Guide”, American Association of State Highway and Transportation Officials, Washington DC, USA, 2004. [Google Scholar]
  2. AASHTO T 307–99 “Standard Method of Test for Determining the Resilient Modulus of Soils and Aggregate Materials”, American Association of State Highway and Transportation Officials, Washington DC, USA, 2017. [Google Scholar]
  3. Abu-Farsakh, M., Dhakal, S., and Chen, Q. “Laboratory Characterization of Cementitiously Treated/Stabilized Very Weak Subgrade Soil under Cyclic Loading”, Soils and Foundations 55, no. 3: 504–16, 2015. https://doi.org/10.1016/j.sandf.2015.04.003 [CrossRef] [Google Scholar]
  4. Ali, G. A., and Youssef, A. F. A. “Stabilization of Silt: A Case Study for Low-Volume Roads in Saudi Arabia”, Transportation Research Record: Journal of the Transportation Research Board 898: 283–90, 1983. https://onlinepubs.trb.org/Onlinepubs/trr/1983/898/898-043.pdf [Google Scholar]
  5. Ardah, A., Chen, Q., and Abu-Farsakh, M. “Evaluating the Performance of Very Weak Subgrade Soils [Google Scholar]
  6. Treated/Stabilized with Cementitious Materials for Sustainable Pavements”, Transportation Geotechnics 11: 107–19, 2017. https://doi.org/10.1016/j.trgeo.2017.05.002 [Google Scholar]
  7. ASTM “Annual Book of ASTM (American Society for Testing and Materials) Standards”, ASTM International, West Conshohocken, PA, USA, 2019. [Google Scholar]
  8. Banerjee, A., Puppala, A. J., Congress, S. S. C., Chakraborty, S., Likos, W. J., and Hoyos, L. R. “Variation of Resilient Modulus of Subgrade Soils over a Wide Range of Suction States”, ASCE Journal of Geotechnical and Geoenvironmental Engineering 146, no. 9: 1–18, 2020. https://doi.org/10.1061/(ASCE)GT.1943-5606.0002332 [CrossRef] [Google Scholar]
  9. Banerjee, A., Puppala, A. J., Hoyos, L. R., Likos, W. J., and Patil., U. D. “Resilient Modulus of Expansive Soils at High Suction Using Vapor Pressure Control”, ASTM Geotechnical Testing Journal: 1–17, 2019. https://doi.org/10.1520/GTJ20180255 [Google Scholar]
  10. Bhuvaneshwari, S., Robinson, R. G., and Gandhi, S. R. “Resilient Modulus of Lime Treated Expansive Soil”, Geotechnical and Geological Engineering 37, no. 1: 305–15, 2019. https://doi.org/10.1007/s10706-018-0610-z [CrossRef] [Google Scholar]
  11. Chakraborty, S., Puppala, A. J., and Biswas, N. “Role of Crystalline Silica Admixture in Mitigating Ettringite- Induced Heave in Lime-Treated Sulfate-Rich Soils”, Geotechnique: 1–17, 2021. https://doi.org/10.1680/jgeot.20.p.154 [Google Scholar]
  12. Drumm, E. C., Reeves, J. S., Madgett, M. R., and Trolinger, W. D. “Subgrade Resilient Modulus Correction for Saturation Effects”, ASCE Journal of Geotechnical and Geoenvironmental Engineering 123, no. 7: 663–70, 1997. https://doi.org/10.1061/(asce)1090-0241(1999)125:3(233) [CrossRef] [Google Scholar]
  13. AASHTO “Mechanistic-Empirical Pavement Design Guide”, American Association of State Highway and Transportation Officials, Washington DC, USA, 2004. [Google Scholar]
  14. AASHTO T 307–99 “Standard Method of Test for Determining the Resilient Modulus of Soils and Aggregate Materials”, American Association of State Highway and Transportation Officials, Washington DC, USA, 2017. [Google Scholar]
  15. Abu-Farsakh, M., Dhakal, S., and Chen, Q. “Laboratory Characterization of Cementitiously Treated/Stabilized Very Weak Subgrade Soil under Cyclic Loading”, Soils and Foundations 55, no. 3: 504–16, 2015. https://doi.org/10.1016/j.sandf.2015.04.003 [CrossRef] [Google Scholar]
  16. Ali, G. A., and Youssef, A. F. A. “Stabilization of Silt: A Case Study for Low-Volume Roads in Saudi Arabia”, Transportation Research Record: Journal of the Transportation Research Board 898: 283–90, 1983. https://onlinepubs.trb.org/Onlinepubs/trr/1983/898/898-043.pdf [Google Scholar]
  17. Ardah, A., Chen, Q., and Abu-Farsakh, M. “Evaluating the Performance of Very Weak Subgrade Soils Treated/Stabilized with Cementitious Materials for Sustainable Pavements”, Transportation Geotechnics 11: 107–19, 2017. https://doi.org/10.1016/j.trgeo.2017.05.002 [Google Scholar]
  18. ASTM “Annual Book of ASTM (American Society for Testing and Materials) Standards”, ASTM International, West Conshohocken, PA, USA, 2019. [Google Scholar]
  19. Banerjee, A., Puppala, A. J., Congress, S. S. C., Chakraborty, S., Likos, W. J., and Hoyos, L. R. “Variation of Resilient Modulus of Subgrade Soils over a Wide Range of Suction States”, ASCE Journal of Geotechnical and Geoenvironmental Engineering 146, no. 9: 1–18, 2020. https://doi.org/10.1061/(ASCE)GT.1943-5606.0002332 [CrossRef] [Google Scholar]
  20. Banerjee, A., Puppala, A. J., Hoyos, L. R., Likos, W. J., and Patil., U. D. “Resilient Modulus of Expansive Soils at High Suction Using Vapor Pressure Control”, ASTM Geotechnical Testing Journal: 1–17, 2019. https://doi.org/10.1520/GTJ20180255 [Google Scholar]
  21. Bhuvaneshwari, S., Robinson, R. G., and Gandhi, S. R. “Resilient Modulus of Lime Treated Expansive Soil”, Geotechnical and Geological Engineering 37, no. 1: 305–15, 2019. https://doi.org/10.1007/s10706-018-0610-z [CrossRef] [Google Scholar]
  22. Chakraborty, S., Puppala, A. J., and Biswas, N. “Role of Crystalline Silica Admixture in Mitigating Ettringite-Induced Heave in Lime-Treated Sulfate-Rich Soils”, Geotechnique: 1–17, 2021. https://doi.org/10.1680/jgeot.20.p.154 [Google Scholar]
  23. Drumm, E. C., Reeves, J. S., Madgett, M. R., and Trolinger, W. D. “Subgrade Resilient Modulus Correction for Saturation Effects”, ASCE Journal of Geotechnical and Geoenvironmental Engineering 123, no. 7: 663–70, 1997. https://doi.org/10.1061/(asce)1090-0241(1999)125:3(233) [CrossRef] [Google Scholar]
  24. Ng, C. W.W. and Zhou, C. “Cyclic Behaviour of an Unsaturated Silt at Various Suctions and Temperatures”, Geotechnique 64, no. 9: 709–20, 2014. https://doi.org/10.1680/geot.14.P.015 [CrossRef] [Google Scholar]
  25. Ooi, P. S. K., Archilla, A. R., and Sandefur, K. G. “Resilient Modulus Models for Compacted Cohesive Soils”, Transportation Research Record: Journal of the Transportation Research Board 1874: 115–24, 2004. https://doi.org/10.3141/1874-13 [Google Scholar]
  26. Papagiannakis, A.T. and Masad, E.A. “Pavement Design and Materials”, John Wiley & Sons, Inc., New Jersey, USA., 2008. [Google Scholar]
  27. Patel, D., Kumar, R., Chauhan, K. A., and Patel, S. “Experimental and Modeling Studies of Resilient Modulus and Permanent Strain of Stabilized Fly Ash”, ASCE Journal of Materials in Civil Engineering 31, no. 8: 4–9, 2019. https://doi.org/10.1061/(asce)mt.1943-5533.0002798 [CrossRef] [Google Scholar]
  28. Petry, T. M. and Little, D. N. “Review of Stabilization of Clays and Expansive Soils in Pavements and Lightly Loaded Structures - History, Practice, and Future”, ASCE Journal of Materials in Civil Engineering 14, no. 6: 447–60, 2002. https://doi.org/10.1061/(asce)0899-1561(2002)14:6(447) [CrossRef] [Google Scholar]
  29. Pezo, R.F. “A General Method of Reporting Resilient Modulus Tests of Soils: A Pavement Engineer’s Point of View”, In: Presented at the 72nd Annual Meeting of the Transportation Research Board. Washington DC, USA, 1993. [Google Scholar]
  30. Pinilla, J. D., Miller, G. A., Cerato, A. B., and Snethen, D. S. “Influence of Curing Time on the Resilient Modulus of Chemically Stabilized Soils”, ASTM Geotechnical Testing Journal 34, no. 4: 364–72, 2011. https://doi.org/10.1520/GTJ103369 [CrossRef] [Google Scholar]
  31. Prusinski, J. R., and Bhattacharja, S. “Effectiveness of Portland Cement and Lime in Stabilizing Clay Soils”, Transportation Research Record: Journal of the Transportation Research Board, no. 1652: 215–27, 1999. https://doi.org/10.3141/1652-2 [Google Scholar]
  32. Pu, S., Zhu, Z., Song, W., Wan, Y., Wang, H., Song, S., and Zhang, J. “Mechanical and Microscopic Properties of Cement Stabilized Silt.” KSCE Journal of Civil Engineering 24, no. 8: 2333–44, 2020. https://doi.org/10.1007/s12205-020-1671-0 [CrossRef] [Google Scholar]
  33. Puppala, A. J. “Estimating Stiffness of Subgrade and Unbound Materials for Pavement Design”, National CooperativeiHighway Research Program : Transportation Research Board, Washington DC, USA, 2008. https://doi.org/10.17226/13598 [Google Scholar]
  34. Puppala, A. J. “Advances in Ground Modification with Chemical Additives: From Theory to Practice”, Transportation Geotechnics 9: 123–38, 2016. https://doi.org/10.1016/j.trgeo.2016.08.004 [Google Scholar]
  35. Puppala, A. J. “Performance Evaluation of Infrastructure on Problematic Expansive Soils: Characterization Challenges, Innovative Stabilization Designs, and Monitoring Methods”, ASCE Journal of Geotechnical and Geoenvironmental Engineering 147, no. 8: 1–15, 2021. https://doi.org/10.1061/(asce)gt.1943-5606.0002518 [CrossRef] [Google Scholar]
  36. Puppala, A. J., Hoyos, L. R., and Potturi, A. K. “Resilient Moduli Response of Moderately Cement-Treated Reclaimed Asphalt Pavement Aggregates”, ASCE Journal of Materials in Civil Engineering 23, no. 7: 990–98, 2011. https://doi.org/10.1061/(asce)mt.1943-5533.0000268 [CrossRef] [Google Scholar]
  37. Puppala, A. J., Ramakrishna, A. M., and Hoyos, L. R. “Resilient Moduli of Treated Clays from Repeated Load Triaxial Test”, Transportation Research Record: Journal of the Transportation Research Board, no. 1821: 68–74, 2003. https://doi.org/10.3141/1821-08 [Google Scholar]
  38. Puppala, A. J., Mohammad, L., and Allen, A. “Engineering Behavior of Lime-Treated Louisiana Subgrade Soil”, Transportation Research Record: Journal of the Transportation Research Board 1546, 1996. https://doi.org/10.3141/1546-03 [Google Scholar]
  39. Seed, H. B., Chan, C. K., and Lee, C.E. “Resilience Characteristics of Subgrade Soils and Their Relation to Fatigue Failures in Asphalt Pavements”, In: International Conference on the Structural Design of Asphalt Pavements, 611–36, 1962. https://trid.trb.org/view/716093 [Google Scholar]
  40. Solanki, P., Zaman, M. M., and Dean, J. “Resilient Modulus of Clay Subgrades Stabilized with Lime, Class C Fly Ash, and Cement Kiln Dust for Pavement Design”, Transportation Research Record: Journal of the Transportation Research Board 2186: 101–10, 2010. https://doi.org/10.3141/2186-11 [Google Scholar]
  41. UFC 3–250-11. “Soil Stabilization for Pavements”, Headquarters, Department of the Defence, Washington DC, USA, 2004. [Google Scholar]
  42. UFC 3–250-11. 2020. “Soil Stabilization and Modification for Pavements”, Headquarters, Department of the Defence, Washington DC, USA, 2020. [Google Scholar]
  43. Uzan, J. “Characterization of Granular Material”, Transportation Research Record: Journal of the Transportation Research Board 1022: 52–59, 1985. [Google Scholar]
  44. Witczak, M. W. “Harmonized Test Methods for Laboratory Determination of Resilient Modulus for Flexible Pavement Design”, National Cooperative Highway Research Program: Transportation Research Board, Washington DC, USA, 2003. [Google Scholar]
  45. Witczak, M. W. and Uzan, J. “The Universal Airport Pavement Design System, Report I of V: Granular Material Characterization”, University of Marryland, College Park, USA, 1988. [Google Scholar]
  46. Yaowarat, T., Horpibulsuk, S., Arulrajah, A., Maghool, F., Mirzababaei, M., Rashid, A. S. A., and Chinkulkijniwat, A. “Cement Stabilisation of Recycled Concrete Aggregate Modified with Polyvinyl Alcohol”, International Journal of Pavement Engineering 23, no. 2: 349–57, 2022. https://doi.org/10.1080/10298436.2020.1746311 [CrossRef] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.