Issue |
E3S Web of Conf.
Volume 547, 2024
International Conference on Sustainable Green Energy Technologies (ICSGET 2024)
|
|
---|---|---|
Article Number | 03023 | |
Number of page(s) | 5 | |
Section | Energy | |
DOI | https://doi.org/10.1051/e3sconf/202454703023 | |
Published online | 09 July 2024 |
Green Synthesis of Nanocomposite Catalysts for Environmental Remediation
1 Lovely Professional University, Phagwara, Punjab, India.
2 Uttaranchal University, Dehradun - 248007, India, sunilprakash@uumail.in
3 Centre of Research Impact and Outcome, Chitkara University, Rajpura - 140417, Punjab, India, shubhansh.bansal.orp@chitkara.edu.in
4 Chitkara Centre for Research and Development, Chitkara University, Himachal Pradesh - 174103 India, rajeev.sharma.orp@chitkara.edu.in
5 Department of Civil Engineering, GRIET, Hyderabad, Telangana, India
6 G D Goenka University, Haryana, India
* Corresponding author: alok.jain@lpu.co.in
This research explores the effectiveness of environmentally friendly nanocomposite catalysts for cleaning up polluted areas. The results of the characterization showed that nanocomposite A had particles that were 20 nm in size, a surface area of 50 m^2/g, and a pore volume of 0.1 cm^3/g. In contrast, nanocomposite E had particles that were 15 nm in size, a surface area of 45 m^2/g, and a greater pore volume of 0.08 cm^3/g. Evaluations of the effectiveness of the catalysts in removing pollutants showed that nanocomposite E was the most effective, with removal percentages of 95% for Pollutant A, 90% for Pollutant B, and 98% for Pollutant C. Analyses of the reaction kinetics showed that nanocomposite E had the best catalytic kinetics, with a rate constant of 0.08 min^-1 and a turnover frequency of 0.003 mol/g/min. As compared to other catalysts, nanocomposite C had the lowest cost per gram and the highest cost efficiency, making it the most cost-effective alternative. With nanocomposite E showing better efficiency in pollutant removal and catalytic kinetics, the results indicate that catalysts made of nanocomposite materials using green techniques might be used for long-term, effective environmental cleanup. Based on these findings, nanocomposite catalysts have great promise for promoting environmental sustainability and protection.
© The Authors, published by EDP Sciences, 2024
This is an Open Access article distributed under the terms of the Creative Commons Attribution License 4.0, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.