Issue |
E3S Web of Conf.
Volume 553, 2024
2024 International Conference on Ecological Protection and Environmental Chemistry (EPEC 2024)
|
|
---|---|---|
Article Number | 01006 | |
Number of page(s) | 7 | |
Section | Battery Technology and Materials | |
DOI | https://doi.org/10.1051/e3sconf/202455301006 | |
Published online | 24 July 2024 |
The Influence of Organic-Inorganic Composite Solid Electrolytes on Electrochemical Performance in Solid-State Lithium Batteries
1 School of Metallurgy and Ecological Engineering, Beijing University of Science and Technology, Beijing 100083, China
2 School of Materials Science and Engineering, Hubei University, Hubei 430062, China
3 Stony Brook Institute at Anhui University, Anhui University, Anhui 230000, China
* Corresponding author: u202140435@xs.ustb.edu.cn
Lithium batteries, as the most closely watched secondary batteries, exhibit outstanding performance. Nonetheless, the formation of lithium dendrites significantly compromises their safety and hampers further development. To mitigate the impact of lithium dendrites on batteries, solid-state lithium batteries have emerged, with solid electrolytes being of paramount importance. Traditional solid electrolytes are categorized into polymers, oxides, and sulfides. However, the inherent limitations of these materials impede their effectiveness. This study proposes a novel solid electrolyte consisting of organic and inorganic materials, aiming to harness the collective benefits of the two electrolyte types to improve the electrochemical performance of solid electrolytes. Empirical data from experiments on composite solid electrolytes, incorporating polyethylene oxide (PEO) with Li6.4La3Zr1.4Ta0.6O12 (LLZTO) and Li10GeP2S12 (LGPS), reveal that these organic-inorganic composite solid electrolytes exhibit high ionic conductivity, reduced interface impedance, and an extensive electrochemical window. It demonstrates that organic-inorganic composite solid electrolytes combining polymers with oxides or sulfides can integrate the advantages of both, achieving electrolyte materials with superior electrochemical performance. Finally, the existing problems are discussed, and future research trends are anticipated.
© The Authors, published by EDP Sciences, 2024
This is an Open Access article distributed under the terms of the Creative Commons Attribution License 4.0, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.