Open Access
Issue
E3S Web of Conferences
Volume 1, 2013
Proceedings of the 16th International Conference on Heavy Metals in the Environment
Article Number 02004
Number of page(s) 4
Section Heavy Metals in Sediments I: Interactions, Remediation, and Management
DOI https://doi.org/10.1051/e3sconf/20130102004
Published online 23 April 2013
  1. Boening DW. Ecological effects, transport, and fate of mercury: a general review. Chemosphere 2000; 40:1335–1351. [CrossRef] [PubMed] [Google Scholar]
  2. Böhme F, Rinklebe J, Stärk HJ, Wennrich R, Mothes S, Neue HU. A simple field method to determine mercury volatilisation from soils. ESPR – Environ Sci & Poll Res. 2005; 12(3):133–135. [CrossRef] [Google Scholar]
  3. Carpi A, Lindberg SE Application of a TeflonTM dynamic flux chamber for quantifying soil mercury flux: tests and results over background soil. Atmospheric Environ. 1998; 32(5): 873–882. [CrossRef] [Google Scholar]
  4. Devai I, Patrick WH, Neue HU, DeLaune RD, Kongchum M, Rinklebe J. Methyl Mercury and Heavy Metal Content in Soils of Rivers Saale and Elbe (Germany), Anal. Lett., 2005; 38:1037–1048. [CrossRef] [Google Scholar]
  5. During A, Rinklebe J, Böhme F, Wennrich R, Stärk HJ, Mothes S, Du Laing, G, Schulz E, Neue HU. Mercury Volatilization from Three Floodplain Soils at the Central Elbe River (Germany). Soil Sediment Contam.: Int. J. 2009; 18:429–444. [CrossRef] [Google Scholar]
  6. Frescholtz TF, Gustin MS. Soil and foliar mercury emission as a function of soil concentration. Water, Air, and Soil Poll. 2004; 155:223–237. [CrossRef] [Google Scholar]
  7. Magarelli G., Fostier AH. Influence of deforestation on the mercury air/soil exchange in the Negro River Basin, Amazon. Atmospheric Environ. 2005; 39:7518–7528. [CrossRef] [Google Scholar]
  8. Overesch M, Rinklebe J, Broll G, Neue HU. Metals and arsenic in soils and corresponding vegetation at Central Elbe river floodplains (Germany), Env. Poll., 2007; 145.800–812. [CrossRef] [Google Scholar]
  9. Rinklebe J, Franke C, Neue HU. Aggregation of Floodplain Soils as an Instrument for Predicting Concentrations of Nutrients and Pollutants. Geoderma 2007; 141:210–223. [CrossRef] [Google Scholar]
  10. Rinklebe J, During A, Overesch, M, Wennrich R, Stärk HJ, Mothes S, Neue HU. Optimization of the simple field method to determine mercury volatilization from soils – Examples of 13 sites in floodplain ecosystems at the Elbe River (Germany), Ecol. Eng. 2009; 35:319–328. [CrossRef] [Google Scholar]
  11. Rinklebe J, During A, Overesch M, Du Laing G, Wennrich R, Stärk HJ, Mothes S. Dynamics of mercury fluxes and their controlling factors in large Hg-polluted floodplain areas, Environ. Pollut. 2010; 158: 308–318. [CrossRef] [Google Scholar]
  12. Schlüter K. Review: evaporation of mercury from soils. An intergration and synthesis of current knowledge. Environ Geol. 2000;39:249–271. [CrossRef] [Google Scholar]
  13. Wallschläger D, Kock HH, Schroeder WH, Lindberg SE, Ebinghaus R, Wilken RD. Estimating gaseous mercury from contaminated floodplain soils to the atmosphere with simple field measurement techniques. Water, Air, and Soil Poll. 2002; 135:39–54. [CrossRef] [Google Scholar]
  14. Wolfe MF, Schwarzbach S, Sulaiman RA Effects of mercury on wildlife: A comprehensive review, Environ. Toxicol. Chem. 1998; 17:146–160. [CrossRef] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.