Open Access
Issue |
E3S Web of Conferences
Volume 1, 2013
Proceedings of the 16th International Conference on Heavy Metals in the Environment
|
|
---|---|---|
Article Number | 39004 | |
Number of page(s) | 4 | |
Section | Analytical Chemistry IV | |
DOI | https://doi.org/10.1051/e3sconf/20130139004 | |
Published online | 23 April 2013 |
- Antonkiewicz J., Jasiewicz Cz., Lošak T. Using Virginia fanpetals for extraction of heavy metals from soil. Acta Scientiarum Polonorum 2006; 5(1): 63–73. (in Polish). [Google Scholar]
- Bączek-Kwinta R., Bartoszek, A. Kusznierewicz B, Antonkiewicz J. Physiological response of plants and cadmium accumulation in heads of two cultivars of white cabbage. Journal of Elementology 2011a; 16: 355–364. [Google Scholar]
- Bączek-Kwinta R., Kozieł A., Seidler-Łożykowska K. Are the fluorescence parameters of German chamomile leaves the first indicators of the anthodia field in drought conditions? Photosynthetica 2011b; 49 (1): 87–97. [CrossRef] [Google Scholar]
- Chen X., Wang J., Shi Y., Zhao M.Q., Chi G. Y. Effects of cadmium on growth and photosynthetic activities in pakchoi and mustard. Botanical studies 2011; 52: 41–46. [Google Scholar]
- Das P., Samantaray S., Rout G..R. Studies on cadmium toxicity in plants: A review. Environmental Pollution 1997; 98: 29–36. [Google Scholar]
- Haouari Ch. Ch., Nasraoui A. H., Bouthour D., Houda M. D., Daieb Ch. B., Mnai J., Gouia H. Response of tomato (Solanum lycopersicon) to cadmium toxicity: Growth, element uptake, chlorophyll content and photosynthetic rate. African Journal of Plant Science 2012; 6 (1): 1–7. [Google Scholar]
- Hsu Y.T., Kao Ch.H. Cadmium toxicity is reduced by nitric oxide in rice leaves. Plant Growth Regulation 2004; 42: 227–238. [CrossRef] [Google Scholar]
- Lichtenehaler H.K., Babani F., Langsdorf G., Buschmann C. Measurement of differences in red chlorophyll fluorescence and photosynthetic activity between sun and shade leaves by fluorescence imaging. Photosynthetica 2000; 38(4): 521–529. [CrossRef] [Google Scholar]
- Lichtenehaler H.K., Miehė J.A. Fluorescence imaging as a diagnostic tool for plant stress. Trends in Plant Science 1997; 2(8): 316–320. [CrossRef] [Google Scholar]
- Maxwell K., Johnson G. N. Chlorophyll fluorescence – a practical guide. Journal of Experimental Botany 2000; 51 (345): 659–668. [CrossRef] [PubMed] [Google Scholar]
- Murakami M., Ae N., Ishikawa S. Phytoextraction of cadmium by rice (Oryza sativa L.), soybean (Glycine max (L.) Merr.), and maize (Zea mays L.). Environmental Pollution 2007; 145:96–103. [CrossRef] [Google Scholar]
- Roháček K., Soukupová J., Barták M. Chlorophyll fluorescence: A wonderful tool to study plant physiology and plant stress. Plant Cell Compartments – Selected Topics 2008; 41–104. [Google Scholar]
- Shafi Tantrey M., Agnihotri R. K. Chlorophyll and proline content of gram (Cicer arietinum L.) under cadmium and mercury treatments. Research Journal of Agricultural Sciences 2010; 1 (2): 119–122. [CrossRef] [Google Scholar]
- Sofo A., Dichio B., Montanaro G., Xiloyannis C. Photosynthetic performance and light response of two olive cultivars under different water and light regimes. Photosynthetica 2009; 47: 602–608. [CrossRef] [Google Scholar]
- Wei S., Zhou Q., Saha U.K. Hyperaccumulative characteristics of weed species to heavy metals. Water, Air and Soil Pollution 2008; 192: 173–181. [CrossRef] [Google Scholar]
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.