Open Access
E3S Web Conf.
Volume 7, 2016
3rd European Conference on Flood Risk Management (FLOODrisk 2016)
Article Number 02001
Number of page(s) 11
Section Climate change
Published online 20 October 2016
  1. Barredo J. I. (2007). Major flood disasters in Europe: 1950–2005. Natural Hazards, 42(1), 125–148. [CrossRef] [Google Scholar]
  2. Lumbroso D. M. and Vinet F. (2011). A comparison of the causes, effects and aftermaths of the coastal flooding of England in 1953 and France in 2010. Natural Hazards and Earth System Sciences, 11(8), 2321–2333. [CrossRef] [Google Scholar]
  3. Church J. A., Clark P. U., Cazenave A., Gregory J. M., … and Unnikrishnan A. S. (2013). Sea Level Change. Climate Change 2013: The Physical Science Basis Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change, Cambridge University Press, Cambridge and New York, pp. 1137–1216. [Google Scholar]
  4. Sterl A., van den Brink H., de Vries H., Haarsma R. and van Meijgaard E. (2009) An ensemble study of extreme storm surge related water levels in the North Sea in a changing climate. Ocean Science, 5(4), 369–378. [CrossRef] [Google Scholar]
  5. Hunter J. (2010). Estimating sea-level extremes under conditions of uncertain sea-level rise. Climatic Change, 99, 331–350. [CrossRef] [Google Scholar]
  6. Wróblewski A. (1994). Analysis and forecast of long-term sea level changes along the Polish Baltic Sea coast. Part II. Annual mean sea levels – forecast to the year 2100. Oceanologia, 36, 107–120 [Google Scholar]
  7. Xu S. and Huang W. (2013). Effects of sea level rise on frequency analysis of 1% annual maximum water levels in the coast of Florida. Ocean Engineering, 71, 96–102. [CrossRef] [Google Scholar]
  8. Church J. A. and White N. J. (2011). Sea-Level Rise from the Late 19th to the Early 21st Century. Surveys in Geophysics, 32, 585–602. [CrossRef] [Google Scholar]
  9. NOAA (2015). Sea Level Rise. Laboratory for Satellite Altimetry,, last accessed 6 Dec 2015. [Google Scholar]
  10. Peltier W. R. (2001). Global glacial isostatic adjustment and modern instrumental records of relative sea level history. Sea Level Rise History and Consequences, International Geophysics, 75, Leatherman, pp. 65–95. [CrossRef] [Google Scholar]
  11. Peltier W. R., Argus D. F. and Drummond R. (2015). Space geodesy constrains ice-age terminal deglaciation: The global ICE-6G_C (VM5a) model. Journal of Geophysical Research: Solid Earth, 120(1), 450–487. [CrossRef] [Google Scholar]
  12. Slangen A. B. A., van de Wal R. S. W., Wada Y. and Vermeersen L. L. A. (2014). Comparing tide gauge observations to regional patterns of sea-level change (1961–2003). Earth System Dynamics, 5(6), 243–255. [CrossRef] [Google Scholar]
  13. Wolski T., Wiśniewski B., Giza A., Kowalewska-Kalkowska H., … and Lydeikaitė Ž. (2014). Extreme sea levels at selected stations on the Baltic Sea coast. Oceanologia, 56(2), 259–290. [CrossRef] [Google Scholar]
  14. SHOM (2012) Statistiques des niveaux marins extrêmes des côtes de France (Manche et Atlantique),, last accessed 7 December 2015. [Google Scholar]
  15. Hosking J. R. M. and Wallis J. R. (1997). Regional Frequency Analysis – An approach based on Lmoments, Cambridge University Press, Cambridge. [CrossRef] [Google Scholar]
  16. Bardet L., Duluc C.-M., Rebour V. and L’Her J. (2011). Regional frequency analysis of extreme storm surges along the French coast. Natural Hazards and Earth System Sciences, 11(6), 1627–1639. [CrossRef] [Google Scholar]
  17. Bernardara P., Andreewsky M. and Benoit M. (2011). Application of regional frequency analysis to the estimation of extreme storm surges. Journal of Geophysical Research, 116, C02008. [CrossRef] [Google Scholar]
  18. Van Gelder P. H. A. J. M. and Mai C. V. (2008). Distribution functions of extreme sea waves and river discharges. Journal of Hydraulic Research, 46(2), 280–291. [CrossRef] [Google Scholar]
  19. Sebastião P., Soares C. G. and Alvarez E. (2008). 44 years hindcast of sea level in the Atlantic Coast of Europe. Coastal Engineering, 55(11), 843–848. [CrossRef] [Google Scholar]
  20. Batstone C., Lawless M., Tawn J., Horsburgh K., … and Hunt T. (2013). A UK best-practice approach for extreme sea-level analysis along complex topographic coastlines. Ocean Engineering, 71, 28–39. [CrossRef] [Google Scholar]
  21. Arns A., Wahl T., Haigh I. D. and Jensen J. (2015). Determining return water levels at ungauged coastal sites: a case study for northern Germany. Ocean Dynamics, 65(4), 539–554. [CrossRef] [Google Scholar]
  22. Hinkel J., Nicholls R. J., Vafeidis A. T., Tol R. S. J. and Avagianou T. (2010). Assessing risk of and adaptation to sea-level rise in the European Union: an application of DIVA. Mitigation and Adaptation Strategies for Global Change, 15(7), 703–719. [CrossRef] [Google Scholar]
  23. Vafeidis A. T., Nicholls R. J., McFadden L., Tol R. S. J., … and Klein R. J. T. (2008). A New Global Coastal Database for Impact and Vulnerability Analysis to Sea-Level Rise. Journal of Coastal Research, 24(4), 917–924. [CrossRef] [Google Scholar]
  24. Mokrech M., Kebede A. S., Nicholls R. J., Wimmer F., Feyen L. (2015). An integrated approach for assessing flood impacts due to future climate and socio-economic conditions and the scope of adaptation in Europe. Climatic Change, 128(3), 245–260. [CrossRef] [Google Scholar]
  25. Muis S., Verlaan M., Winsemius H., Aerts J. C. J. H. and Ward P. J. (2015). The first global-scale hindcast of extreme sea levels. E-proceedings of the 36th IAHR World Congress, The Hague, the Netherlands. [Google Scholar]
  26. Vousdoukas M. I., Voukouvalas E., Annunziato A., Giardino A. and Feyen L. (2015). Projections of extreme storm surge levels along Europe. Climate Dynamics (submitted). [Google Scholar]
  27. Paprotny D. and Morales-Nápoles O. (2015) A Bayesian Network for extreme river discharges in Europe. Safety and Reliability of Complex Engineered Systems, CRC Press/Balkema, 4303–4311. [CrossRef] [Google Scholar]
  28. Jacob D., Petersen J., Eggert B., Alias A., … and Yiou P. (2014). EURO-CORDEX: new high resolution climate change projections for European impact research. Regional Environmental Change, 14(2), 563–578. [CrossRef] [Google Scholar]
  29. Dee D. P., Uppala S. M., Simmons A. J., Berrisford P., … and Vitart F. (2011). The ERA-Interim reanalysis: configuration and performance of the data assimilation system. Quarterly Journal of the Royal Meteorological Society, 137, 553–597. [CrossRef] [Google Scholar]
  30. Strandberg G., Bärring L., Hansson U., Jansson C., …, Wang S. (2014). CORDEX scenarios for Europe from the Rossby Centre regional climate model RCA4. Report Meteorology and Climatology No. 116, SMHI, Norrköping, Sweden. [Google Scholar]
  31. Moss R., Babiker M., Brinkman S., Calvo E., … and Zurek M. (2008). Towards New Scenarios for Analysis of Emissions, Climate Change, Impacts, and Response Strategies, Intergovernmental Panel on Climate Change, Geneva. [Google Scholar]
  32. EMODnet (2015). Portal for Bathymetry,, last accessed 14 Dec 2015. [Google Scholar]
  33. Charnock H. (1955). Wind stress on a water surface. Quarterly Journal of the Royal Meteorological Society, 81, 639–640. [CrossRef] [Google Scholar]
  34. Fourcy D. and Lorvelec O. (2013). A new digital map of limits of oceans and seas consistent with high-resolution global shorelines. Journal of Coastal Research, 29(2), 471–477. [CrossRef] [Google Scholar]
  35. UHLSC (2015). Research Quality., last accessed 11 Dec 2015. [Google Scholar]
  36. BODC (2015). International sea level,, last accessed 12 Dec 2015. [Google Scholar]
  37. SMHI (2015). SMHI Öppna data, Last accessed 11 December 2015. [Google Scholar]
  38. Rijkswaterstaat (2015). Waterbase,, last accessed 11 December 2015. [Google Scholar]
  39. Wiśniewski B. and Wolski T. (2009). Katalogi wezbrań i obniżeń sztormowych poziomów morza oraz ekstremalne poziomy wód na polskim wybrzeżu, Maritime University of Szczecin, Szczecin. [Google Scholar]
  40. McMillan A., Batstone C., Worth D., Tawn J., Horsburgh K. and Lawless M. (2011). Coastal flood boundary conditions for UK mainland and islands, Environment Agency, Bristol. [Google Scholar]
  41. Moriasi D., Arnold J., Van Liew M., Binger R., Harmel R. and Veith T. (2007). Model evaluation guidelines for systematic quantification of accuracy in watershed simulations. Transactions of the ASABE, 50(3), 885–900. [CrossRef] [Google Scholar]
  42. Arns A., Wahl T., Haigh I. D., Jensen J. and Pattiaratchi C. (2013). Estimating extreme water level probabilities: A comparison of the direct methods and recommendations for best practise. Ocean Engineering, 81, 51–66. [Google Scholar]
  43. Haigh I. D., Nicholls R. and Wells N. (2010). A comparison of the main methods for estimating probabilities of extreme still water levels. Coastal Engineering, 57(9), 838–849. [CrossRef] [Google Scholar]
  44. Mutua F. M. (1994). The use of the Akaike Information Criterion in the identification of an optimum flood frequency model. Hydrological Sciences Journal, 39(3), 235–244. [CrossRef] [Google Scholar]
  45. Joe H. 2014. Dependence Modeling with Copulas, Chapman & Hall/CRC, London. [Google Scholar]
  46. Egbert G. D., Bennett A. F. and Foreman M. G. G. (1994). Topex/Poseidon tides estimated using a global inverse model. Journal of Geophysical Research, 99(C12), 24821–24852. [CrossRef] [Google Scholar]
  47. Stammer D., Ray R. D., Andersen O. B., Arbic B. K., … and Yi Y. (2014). Accuracy assessment of global barotropic ocean tide models. Reviews in Geophysics, 52(3), 243–282. [CrossRef] [Google Scholar]
  48. Pickering M. D., Wells N. C., Horsburgh K. J., Green J. A. M. (2012). The impact of future sea-level rise on the European shelf tides. Continental Shelf Research, 35, 1–15. [CrossRef] [Google Scholar]
  49. Aviso (2015). Combined mean dynamic topography,, last accessed 15 Dec 2015. [Google Scholar]
  50. Rio M.-H., Mulet S. and Picot N. (2014). Beyond GOCE for the ocean circulation estimate: Synergetic use of altimetry, gravimetry, and in situ data provides new insight into geostrophic and Ekman currents. Geophysical Research Letters, 41(24), 8918–8925. [CrossRef] [Google Scholar]
  51. Voldoire A., Sanchez-Gomez E., Salas y Mélia D., Decharme B., … and Chauvin F. (2013). The CNRM-CM5.1 global climate model: description and basic evaluation. Climate Dynamics, 40(9), 2091–2121. [CrossRef] [Google Scholar]
  52. Slangen A. B. A., Carson M., Katsman C. A., van de Wal R. S. W., … and Stammer D. (2014). Projecting twenty-first century regional sea-level changes. Climatic Change, 124(1), 317–332. [CrossRef] [Google Scholar]
  53. Carson M., Koehl A., Stammer D., Slangen A. B. A., … and White N. (2016). Coastal Sea Level Changes, Observed and Projected during the 20th and 21st Century. Climatic Change, 134(1), 269–281. [CrossRef] [Google Scholar]
  54. De Jager A. L. and Vogt J. V. (2010). Development and demonstration of a structured hydrological feature coding system for Europe. Hydrological Sciences Journal, 55(5), 661–675. [CrossRef] [Google Scholar]
  55. Lilje M. (2004). Changing the Geodetic Infrastructure. FIG Working Week 2004, Athens, Greece, May 22-27, 2004. [Google Scholar]
  56. Poulter B. and Halpin P. N. (2008). Raster modeling of coastal flooding from sea-level rise. International Journal of Geographical Information Science, 22(2), 167–182. [CrossRef] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.