Open Access
Issue
E3S Web Conf.
Volume 7, 2016
3rd European Conference on Flood Risk Management (FLOODrisk 2016)
Article Number 02002
Number of page(s) 12
Section Climate change
DOI https://doi.org/10.1051/e3sconf/20160702002
Published online 20 October 2016
  1. Cabanes C., Cazenave A. and Le Provost C. (2001). Sea level rise during past 40 years determined from satellite and in situ observations. Science, 294, 840- 842. [CrossRef] [Google Scholar]
  2. Marcos M. and Tsimplis M.N. (2008). Coastal sea level trends in Southern Europe. Geophysical Journal International, 175(1), 70–82. [CrossRef] [Google Scholar]
  3. WASA- Group. (1998). Changing waves and storms in the Northeast Atlantic? Bulletin of the American Meteorological Society, 79, 741–760. [Google Scholar]
  4. Weisse, R. von Storch, H. and Feser, F. (2005). Northeast Atlantic and North Sea storminess as simulated by a regional climate model. Journal of Climate, 18, 465–479. [CrossRef] [Google Scholar]
  5. Wang X. and Swail V. (2006). Climate change signal and uncertainty in projections of ocean wave heights. Climate Dynamics, 26, 109–126. [CrossRef] [Google Scholar]
  6. Debernard J. and Roed L. (2008). Future wind, wave and storm surge climate in the Northern Seas: a revisit. Tellus, 60, 427–438. [CrossRef] [Google Scholar]
  7. Woth, K., Weisse, R. and Storch, H. (2006). Climate change and North Sea storm surge extremes: an ensemble study of storm surge extremes expected in a changed climate projected by four different regional climate models. Ocean Dynamics, 56(1), 3–15. [CrossRef] [Google Scholar]
  8. De Winter R.C., Sterl A., de Vries J.W., Weber S.L. and Ruessink G. (2012). The effect of climate change on extreme waves in front of the Dutch coast. Ocean Dynamics, 62(8), 1139–1152. [CrossRef] [Google Scholar]
  9. Weisse R., von Storch H., Niemeyer H.D. and Knaack H. (2012). Changing North Sea storm surge climate: An increasing hazard? Ocean and Coastal Management, 68, 58–68. [CrossRef] [Google Scholar]
  10. Μéndez F.J., Menéndez Μ., Luceño Α. and Losada Ι.J. (2006). Estimation of the long-term variability of extreme significant wave height using a timedependent Peak Over Threshold (POT) model. Journal of Geophysical Research, 111(7), C07024. [CrossRef] [Google Scholar]
  11. Lionello P., Cogo S., Galati M.B. and Sanna A. (2008). The Mediterranean surface wave climate inferred from future scenario simulations. Global and Planetary Change, 63, 152–162. [CrossRef] [Google Scholar]
  12. Casas-Prat M. and Sierra J.P. (2011). Future scenario simulations of wave climate in the NW Mediterranean Sea. Journal of Coastal Research, SI 64, 200–204. [Google Scholar]
  13. Gaertner M.A., Jacob D., Gil V., Dominguez M., Padorno E., Sanchez E. and Castro M. (2007). Tropical cyclones over the Mediterranean Sea in climate change simulations. Geophysical Research Letters, 34(14), L14711. [CrossRef] [Google Scholar]
  14. Martucci G., Carniel S., Chiggiato J., Sclavo M., Lionello P. and Galati M. B. (2010). Statistical trend analysis and extreme distribution of significant wave height from 1958 to 1999–an application to the Italian Seas. Ocean Science, 6(2), 525–538. [CrossRef] [Google Scholar]
  15. Galiatsatou P. and Prinos P. (2014). Analysing the effects of climate change on wave height extremes in the Greek Seas, Proceedings of the 11th International Conference on Hydroscience & Engineering (ICHE 2014), Hamburg - Lehfeldt & Kopmann (eds) - © 2014 Bundesanstalt für Wasserbau ISBN 978-3- 939230-32-8, 773–781. [Google Scholar]
  16. Galiatsatou P. and Prinos P. (2015). Estimating the effects of climate change on storm surge extremes in the Greek Seas, 36th IAHR World Congress, 28 June - 3 July, The Hague, The Netherlands [Google Scholar]
  17. Sánchez-Arcilla A., Gomez-Aguar J., Egozcue J. J., Ortego M. I., Galiatsatou P. and Prinos P. (2008). Extremes from scarce data. The role of Bayesian and scaling techniques in reducing uncertainty. Journal of Hydraulic Research, 46(2), 224–234. [CrossRef] [Google Scholar]
  18. van Gelder P.H.A.J.M. and Mai C. (2008). Distribution functions of extreme sea waves and river discharges. Journal of Hydraulic Research, 46(2), 280–291. [CrossRef] [Google Scholar]
  19. Bulteau T., Lecacheux S., Lerma A. N. and Paris F. (2013). Spatial extreme value analysis of significant wave heights along the French coast. In International short conference on advances in extreme value analysis and application to natural hazards: EVAN 2013. [Google Scholar]
  20. Coles S. and Tawn J. (2005). Bayesian modelling extreme surges on the UK east coast. Philosophical Transactions of the Royal Society of London (A: Mathematical, Physical and Engineering Sciences), 363, 1387–1406. [CrossRef] [Google Scholar]
  21. van Gelder P.H.A.J.M. (1999). Risk-based design of civil structures. PhD-Thesis, University of Technology, Delft, The Netherlands. [Google Scholar]
  22. Galiatsatou P. and Prinos P. (2008). Non-stationary point process models for extreme storm surges, Flood Risk Management Research into Practice, Oxford, 1045–1054. [Google Scholar]
  23. Bardet L., Duluc C. M., Rebour V. and L’Her J. (2011). Regional frequency analysis of extreme storm surges along the French coast. Natural Hazards and Earth System Sciences, 11(6), 1627–1639. [CrossRef] [Google Scholar]
  24. Galiatsatou P. and Prinos P. (2005). Analysis of dependence in a bivariate process of extreme waves and surges, Proceedings of the 1st International Conference on Coastal Zone Management and Engineering in the Middle East, Dubai, 221–225 [Google Scholar]
  25. Morton I. D. and Bowers J. (1996). Extreme value analysis in a multivariate offshore environment. Applied Ocean Research, 8, 303–317. [CrossRef] [Google Scholar]
  26. De Haan L. and De Ronde J. (1998). Sea and wind: multivariate extremes at work. Extremes, 1, 7–45. [CrossRef] [Google Scholar]
  27. Ferreira J.A. and Guedes Soares C. (2002). Modelling bivariate distributions of significant wave height and mean period. Applied Ocean Research, 24, 31–45. [CrossRef] [Google Scholar]
  28. Repko A., Van Gelder P.H.A.J.M., Voortman H.G. and Vrijling J.K. (2004). Bivariate description of offshore wave conditions with physics-based extreme value statistics, Applied Ocean Research, 26, 162–170. [CrossRef] [Google Scholar]
  29. Yeh S.P., Ou S.P., Doong D.J., Kao C.C. and Hsieh D.W. (2006). Joint probability analysis of waves and water level during typhoons. In Proceedings of the Third Chinese-German Joint Symposium on Coastal and Ocean Engineering. [Google Scholar]
  30. Galiatsatou P. (2007). Joint exceedance probabilities of extreme waves and storm surges. XXXIII Congress of IAHR, pp 780 (abstract), (JFK Competition). [Google Scholar]
  31. Wahl T., Mudersbach C. and Jensen J. (2012). Assessing the hydrodynamic boundary conditions for risk analyses in coastal areas: a multivariate statistical approach based on copula functions, Natural Hazards and Earth System Sciences, 12, 495–510. [Google Scholar]
  32. Corbella A. and Stretch D. D. (2013). Simulating a multivariate sea storm using Archimedean copulas. Coastal Engineering, 76, 68–78. [CrossRef] [Google Scholar]
  33. Masina M., Lamberti A. and Archetti R. (2015). Coastal flooding: A copula based approach for estimating the joint probability of water levels and waves. Coastal Engineering, 97, 37–52. [CrossRef] [Google Scholar]
  34. Grimaldi S. and Serinaldi F. (2006). Design hyetographs analysis with 3-copula function. Hydrological Sciences Journal, 51(2), 223–238. [CrossRef] [Google Scholar]
  35. Shiau JT. (2006). Fitting drought duration and severity with two dimensional copulas. Water Resources Management, 20(5), 795–815. [CrossRef] [Google Scholar]
  36. Zhong H., van Overloop P.-J. and van Gelder P. (2013). A joint probability approach using a 1-D hydrodynamic model for estimating high water level frequencies in the Dutch Lower Rhine Delta. Natural Hazards and Earth System Sciences, 13, 1841–1852. [CrossRef] [Google Scholar]
  37. Zhang L. (2005). Multivariate hydrological frequency analysis and risk mapping. Doctoral dissertation, Beijing Normal University. [Google Scholar]
  38. Chebana F., Ouarda T.B.M.J. and Duong T.C. (2013). Testing for multivariate trends in hydrologic frequency analysis. Journal of Hydrology, 486, 519- 530. [CrossRef] [Google Scholar]
  39. Bender J., Wahl T. and Jensen J. (2014). Multivariate design in the presence of nonstationarity. Journal of Hydrology, 514, 123–130. [CrossRef] [Google Scholar]
  40. Coles S. (2001). An introduction to statistical modelling of extreme values. Springer Series in Statistics, Springer, Berlin. [Google Scholar]
  41. Hosking J.R.M. (1990). L-moments: analysis and estimation of distributions using linear combinations of order statistics. Journal of the Royal Statistical Society (Series B), 52, 105–124. [Google Scholar]
  42. De Kort J. (2007). Modeling tail dependence using copulas-literature review, http://ta.twi.tudelft.nl/nw/users/vuik/numanal/kort_scriptie.pdf [accessed 29 February 2016] [Google Scholar]
  43. Joe H. and Xu J.J. (1996). The Estimation Method of Inference Functions for Margins for Multivariate Models. Working paper, Department of Statistics, University of British Columbia. [Google Scholar]
  44. Genest C., Ghoudi K. and Rivest L. P. (1995). A semiparametric estimation procedure of dependence parameters in multivariate families of distributions. Biometrika, 82, 543–552. [CrossRef] [Google Scholar]
  45. Salvadori G., De Michele C and Durante F. (2011) Multivariate design via copulas, Hydrology & Earth System Sciences Discussions, 8(3), 5523–5558. [CrossRef] [Google Scholar]
  46. Gräler B., van den Berg M.J., Vandenberghe S., Petroselli A., Grimaldi S., De Baets B. and Verhoest N.E.C. (2013). Multivariate return periods in hydrology: a critical and practical review focusing on synthetic design hydrograph estimation. Hydrology and Earth System Sciences, 17, 1281–1296. [CrossRef] [Google Scholar]
  47. Stockdon H. F., Holman R. A., Howd P. A. and Sallenger A. H. (2006). Empirical parameterization of setup, swash, and runup. Coastal Engineering, 53, 573–588. [Google Scholar]
  48. Booij N., Ris R.C., and Holthuijsen L.H. (1999). A Third-Generation Wave Model for Coastal Regions. 1. Model Description and Validation. Journal of Geophysical Research, 104, 7649–7666. [CrossRef] [Google Scholar]
  49. Androulidakis Y.S., Kombiadou K.D., Makris C.V., Baltikas V.N. and Krestenitis Y.N. (2015). Storm surges in the Mediterranean Sea: Variability and trends under future climatic conditions. Dynamics of Atmospheres and Oceans. 71, 56–82. [CrossRef] [Google Scholar]
  50. Dickinson R, Errico R., Giorgi F. and Bates G. (1989). A regional climate model for the western United States. Climate Change, 15(3), 383–422. [Google Scholar]
  51. Hosking J.R.M., Wallis J.R. (1997). Regional Frequency Analysis: An Approach based on LMoments. Cambridge University Press, 238 p. [Google Scholar]
  52. Hipel K.W. and McLeod A.I. (2005). Time Series Modelling of Water Resources and Environmental Systems. Electronic reprint of the book originally published in 1994, http://www.stats.uwo.ca/faculty/aim/1994Book/ [accessed 29 February 2016] [Google Scholar]
  53. Chambers, J. M. (1992). Linear models. Chapter 4 of Statistical Models in S eds J. M. Chambers and T. J. Hastie, Wadsworth & Brooks/Cole. [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.