Open Access
Issue
E3S Web Conf.
Volume 7, 2016
3rd European Conference on Flood Risk Management (FLOODrisk 2016)
Article Number 03013
Number of page(s) 9
Section Performance and behaviour of flood defences
DOI https://doi.org/10.1051/e3sconf/20160703013
Published online 20 October 2016
  1. ABC news (2011, Jan 18). Flood costs tipped to top $30b. Retrieved from http://www.abc.net.au/ [Google Scholar]
  2. European Parliament (2007). Directive 2007/60/EC of the European Parliament and of the council, on the assessment and management of flood risk. Official Journal of the European Union, 288, 27–34 [Google Scholar]
  3. Verheij H.J. and Van der Knaap F.C.M. (2002). Modification breach growth model in HIS-OM. WL|Delft Hydraulics Q, 3299, 2002 [Google Scholar]
  4. De Moel H. (2012). Uncertainty in Flood Risk. PhD dissertation, VU University Amsterdam [Google Scholar]
  5. Rijkswaterstraat (2001). Hydraulische randvoorwaarden 2001 voor het toetsen van primaire waterkeringen. Technical report, Rijkswaterstraat, DWW, Delft, The Netherlands (in Dutch) [Google Scholar]
  6. Hanssen R.F. and van Leijen F.J. (2008). Monitoring water defense structures using radar interferometry. Radar Conference, RADAR’08, IEEE 1–4 [CrossRef] [Google Scholar]
  7. Schweckendiek T., Vrouwenvelder A. C. W. M. and Calle E. O. F. (2014). Updating piping reliability with field performance observations. Structural Safety, 47, 13–23 [CrossRef] [Google Scholar]
  8. Seed R., Bea R., Athanasopoulos-Zekkos A., Boutwell G., Bray J., Cheung C., Cobos-Roa D., Harder L. Jr., Moss R., Pestana J., Riemer M., Rogers J., Storesund R., Vera-Grunauer X., Wartman J. (2008). New Orleans and Hurricane Katrina. III: The 17th Street Drainage Canal. Journal of Geotech. and Geoenviron. Eng., 134(5), 740–761 [CrossRef] [Google Scholar]
  9. Seed R., Bea R., Athanasopoulos-Zekkos A., Boutwell G., Bray J., Cheung C., Cobos-Roa D., Ehrensing L., Harder L. Jr, Pestana J., Riemer M., Rogers J., Storesund R., Vera-Grunauer X., Wartman J. (2008). New Orleans and Hurricane Katrina. II: The Central Region and the Lower Ninth Ward. Journal of Geotech. and Geoenviron. Eng., 134(5), 718–739 [Google Scholar]
  10. Heyer T. and Horlacher H. B. (2007). Analyse der Deichbrüche an Elbe und Mulde während des Hochwassers 2002 im Bereich Sachsens “Flussdeiche – Bemessung, Dichtungssysteme und Unterhaltung”. In Proceedings of the DWA Seminar, Fulda, Germany (in German). [Google Scholar]
  11. Froehlich D. C. (1987). Embankment-dam breach parameters. In Hydraulic Engineering, Proceedings of the 1987 ASCE National Conference, 570–575 [Google Scholar]
  12. Danka J. and Zhang L. (2015). Dike Failure Mechanisms and Breaching Parameters. Journal of Geotech. and Geoenviron. Eng., 141(9), 04015039 [CrossRef] [Google Scholar]
  13. Visser P. J. (1998). Breach growth in Sand-Dikes. PhD dissertation, Delft University of Technology [Google Scholar]
  14. Sills G.L., Vroman N.D., Wahl R.E. and Schwanz N.T. (2008). Overview of New Orleans levee failures: lessons learned and their impact on national levee design and assessment. Journal of Geotech. and Geoenviron. Eng., 134(5), 556–565 [CrossRef] [Google Scholar]
  15. Jonkman S.N., Barames V., Blommaart P, de Bruin B., Hardeman B., Kaensap K., van der Meer M., Schweckendiek T., Vrijling J. K. (2012). Post-flood field investigation in the Lower Chao Phraya River Basin, 23 – 27 January 2012, Findings of the Thai - Dutch Reconnaissance Team, Final report [Google Scholar]
  16. Morris M., Hassan M., Kortenhaus A., Geisenhainer P., Visser P.J., and Zhu Y. (2009). Modelling breach initiation and growth. FLOODsite Report, 1–127 [Google Scholar]
  17. Morris M., Hanson G., and Hassan M. (2008). Improving the accuracy of breach modelling: Why are we not progressing faster? Journal of Flood Risk Management,1(3), 150–161 [CrossRef] [Google Scholar]
  18. Muijs J. A. (1999). Grass cover as a dike revetment. Technical report, Technical Advisory Committee for Flood Defence, Rijkswaterstraat, DWW [Google Scholar]
  19. Nezu I. and Okamoto T. (2010). Simultaneous measurements of velocity and plant motion in openchannel flows with flexible vegetations. Environmental Hydraulics, 2, 209–214 [Google Scholar]
  20. Pollen N. (2007). Temporal and spatial variability in root reinforcement of streambanks: accounting for soil shear strength and moisture. Catena, 69(3), 197–205 [CrossRef] [Google Scholar]
  21. Richards L.A. (1931). Capillary conduction of liquids through porous mediums. Journal of Applied Physics, 1(5), 318–333 [Google Scholar]
  22. Whitehead E., Bull W., and Schiele M. (1976). A guide to the use of grass in hydraulic engineering practice. Technical report, Construction and Industry Research and Information Association (CIRIA) [Google Scholar]
  23. van Damme M., Ponsioen L., Herrero M. (2016). Applying overflow and wave-overtopping simulators in an embankment breach experiment. In FloodRisk2016 [Google Scholar]
  24. Hughes S.A. (2011). Adaptation of the levee erosional equivalence method for the hurricane storm damage risk reduction system (HSDRRS). Engineer Research and Development Center Vicksburg Ms Coastal and Hydraulics Lab. [Google Scholar]
  25. Dean R. G., Rosati J. D., Walton T.L. and Edge B. L. (2010). Erosional equivalences of levees: Steady and intermittent wave overtopping. Ocean Engineering, 37(1), 104–113 [CrossRef] [Google Scholar]
  26. Jonkman S.N. and Schweckendiek T. (2015). Flood Defences Course Lecture Notes, Delft University of Technology [Google Scholar]
  27. Sametz L. (1981). Beitrag zur Frage der Flutwellenbildung bei progressiven Dammbruchen infolge von Uberstromung. PhD dissertation, Technischen Universitat Graz (in German) [Google Scholar]
  28. Broich K. (1996). Computergestützte Analyse des Dammerosionsbruchs. PhD dissertation, Universität der bundeswehr München, Institut für Wasserwesen (in German) [Google Scholar]
  29. Zhu Y.H., Visser P.J. and Vrijling J. K. (2008). Soil headcut erosion: process and mathematical modeling. In Proceedings in Marine Science, 9, 125–136 [CrossRef] [Google Scholar]
  30. van Damme M., Morris M.W. and Hassan M. (2012). A new approach to rapid assessment of breach driven embankment failures. FRMRC2 Research Report SWP 4.4, HR Wallingford [Google Scholar]
  31. Van Rhee C. (2010). Sediment entrainment at high flow velocity. Journal of Hydraulic Engineering, 136(9), 572–582 [CrossRef] [Google Scholar]
  32. Van Rhee C. and Bezuijen A. (1992). Influence of seepage on the stability of a sandy slope. Journal of Geotechnical Eng., 118(8), 1236–1240 [Google Scholar]
  33. Morris M. (2011). Breaching of earth embankments and dams. PhD dissertation, Open University [Google Scholar]
  34. Sidorchuk A. (2002). Stochastic modelling of soil erosion and deposition. In Proceeding of the 12th ISCO Conference, 136–142 [Google Scholar]
  35. Bagnold R. A. (1966). An approach to the sediment transport problem from general physics. General Physics Geological Survey, prof. paper [Google Scholar]
  36. Dentz F., van Halderen L., Possel B., Esfahany S.S., Slobbe C., Wortel T. (2006). On the potential of satellite radar interferometry for monitoring dikes of the Netherlands, technical feasibility study. POSEIDON Project final report, Faculty of Aerospace engineering, TU Delft [Google Scholar]
  37. Dixon T.H., Amelung F., Ferretti A., Novali F., Rocca F., Dokka R., Sella G., Kim S., Wdowinski S., Whitman S. (2006). Subsidence and flooding in New Orleans. Nature Publishing Group, 441(7093), 587–588 [Google Scholar]
  38. Clementini C. (2014). A geotechnical based approach for dike monitoring by permanent scatterers interferometry The Case of the Marken Island, The Netherlands. Master Thesis from School of Civil, Environmental and Land Management Engineering, Politecnico Di Milano, Italy [Google Scholar]
  39. Jonkman S.N., Vrijling J.K., Vrouwenvelder A.C.W.M. (2008). Methods for the estimation of loss of life due to floods: A literature review and a proposal for a new method. Natural Hazards, 46(3), 353–389 [CrossRef] [Google Scholar]
  40. Hanssen R.F. (2001). Radar Interferometry: Data Interpretation and Error Analysis. Kluwer Academic Publishers, 2 [CrossRef] [Google Scholar]
  41. Bamler R. and Hartl P. (1998). Synthetic aperture radar interferometry. Inverse Problems, 14(4), R1–R54 [CrossRef] [Google Scholar]
  42. van Leijen F. (2014). Persistent Scatterer Interferometry based on geodetic estimation theory. PhD dissertation, Delft University of Technology [Google Scholar]
  43. Ferretti A., Prati C., and Rocca F. (2001). Permanent scatterers in SAR interferometry. IEEE Transactions on Geoscience and Remote Sensing, 39(1), 8–20 [CrossRef] [Google Scholar]
  44. Berardino P., Fornaro G., Lanari R. and Sansosti E. (2002). A new algorithm for surface deformation monitoring based on small baseline differential SAR interferograms. IEEE Transactions on Geoscience and Remote Sensing, 40(11), 2375–2383 [CrossRef] [Google Scholar]
  45. Kampes B.M. (2006). The stun algorithm, Radar Interferometry: Persistent Scatterer Technique, Springer, 43–69 [Google Scholar]
  46. Hooper A. (2008). A multi-temporal InSAR method incorporating both persistent scatterer and small baseline approaches. Geophysical Research Letters, 35(16) [CrossRef] [PubMed] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.