Open Access
E3S Web Conf.
Volume 7, 2016
3rd European Conference on Flood Risk Management (FLOODrisk 2016)
Article Number 05001
Number of page(s) 13
Section Physical, economic and environmental consequences
Published online 20 October 2016
  1. Hu, Z., Huyck, C., Eguchi, M., Bevington, J. (2014). User guide: Tool for spatial inventory data development. GEM Technical Report 2014-05 V1.0.0, GEM Foundation, Pavia, Italy. [Google Scholar]
  2. Blanco-Vogt, A., Schanze, J. (2014). Assessment of the physical flood susceptibility of buildings on a large scale - conceptual and methodological frameworks. Natural Hazards and Earth System Science, Vol. 14, No. 8, pp.2105–2117. [Google Scholar]
  3. United Nations International Strategy for Disaster Risk Reduction (2009). UNSDR terminology on disaster risk reduction. [Google Scholar]
  4. Coburn, W.A., Spence, R.J.S., Pomonis, A. (1994). Vulnerability and Risk Assessment. UNDP Disaster Management Training Programme. [Google Scholar]
  5. Van Westen, C.J., Kingma, N., Montoya, L. (2009). Multi-hazard risk assessment Guide Book, Session 4: Elements at risk. United Nations University –ITC School on Disaster Geo-information Management. [Google Scholar]
  6. Genovese, E. (2006). A methodological approach to land use-based flood damage assessment in urban areas: Prague case study. European Commission, Joint Research Centre. [Google Scholar]
  7. Muthukumar, S. (2008). The application of advanced inventory techniques in urban inventory data development to earthquake risk modeling and mitigation in mid-America. Georgia Institute for Technology, GA. [Google Scholar]
  8. EERI (2002). World Housing Encyclopedia. Earthquake Enginnering Research Institute, Oakland, CA, USA. [Google Scholar]
  9. Jaiswal, K., Wald, D., Porter, K. (2010). A Global Building Inventory for Earthquake Loss Estimation and Risk Management. Earthquake Spectra, Vol. 26, No. 3, pp. 731–748. [CrossRef] [Google Scholar]
  10. HAZUS – MH2.1, Multi hazard estimation methodology, Earthquake Model - User Manual. Department of Homeland Security Federal Emergency Management Agency Mitigation Division, Washington, D.C., USA. [Google Scholar]
  11. Brzev, S., Scawthorn, C., Charleson, A.W., Allen, L., Greene, M., Jaiswal, K., Silva, V. (2013). GEM Building Taxonomy Version 2, GEM Technical Report 2013-02 V1.0.0. GEM Foundation, Pavia, Italy. [Google Scholar]
  12. Taubenböck, H., Post, J., Roth, A., Zosseder, K., Strunz, G., and Dech, S. (2008). A conceptual vulnerability and risk framework as outline to identify capabilities of remote sensing. Natural Hazards and Earth System Sciences, Vol. 8, pp. 409–420 [CrossRef] [Google Scholar]
  13. SENSUM (2013). Deliverable 2.1: Present day and future remote sensing data. Report on globally available present-day and future remote sensing data and products. Framework to integrate Space-based and in-situ sENSing for dynamic vUlnerability and recovery Monitoring (SENSUM) Project. [Google Scholar]
  14. Ebert, A., Kerle, N., Stein, A. (2009). Urban social vulnerability assessment with physical proxies and spatial metrics derived from air- and spaceborne imagery and GIS data. Natural Hazards, Vol. 48, pp. 275–294. [CrossRef] [Google Scholar]
  15. Taubenböck, H. (2011). The vulnerability of a city -diagnosis from a bird’s eye view. In: Mörner, N.A. (ed) The Tsunami threat - research and technology. InTech, Croatia, pp. 107–128. [Google Scholar]
  16. Zeng, J., Zhu, Z.Y., Zhang, J.L., Ouyang, T.P., Qiu, S.F., Zou, Y., Zeng, T. (2011). Social vulnerability assessment of natural hazards on county-scale using high spatial resolution satellite imagery: a case study in the Luogang district of Guangzhou, South China. Environmental Earth Science, Vol. 65, pp. 173–182. [CrossRef] [Google Scholar]
  17. Huyck, C., Hu, Z., Bevington, J., Ghosh, S., Eguchi, R. (2011). Inference of Structural Characteristics for Regional Building Inventories Using Remotely Sensed Data and Ground Observations. Proceedings of the Ninth International Workshop on Remote Sensing for Disaster Response, Stanford, CA. [Google Scholar]
  18. Bevington, J., Eguchi, R., Huyck, C., Crowley, H., Dell’Acqua, F., Iannelli, G., Jordan, C., Morley, J., Wieland, M., Parolai, S., Pittore, M., Porter, K., Saito, K., Sarabandi, P., Wright, A., Wyss, M. (2012). Exposure Data Development for the Global Earthquake Model: Inventory Data Capture Tools. Proceedings of the 15th World Conference on Earthquake Engineering, Lisbon, Portugal. [Google Scholar]
  19. Kaveckis, G. (2011). Potential Contribution of Hazus-MH to Flood Risk Assessment in the Context of the European Flood Directive. Master Thesis, Carinthia University of Applied Sciences, School of Geoinformation, Austria. [Google Scholar]
  20. Seligson, H. (2008). The ShakeOut Scenario Supplemental Study: HAZUS Enhancements and Implementation for the ShakeOut Scenario, USGS. [Google Scholar]
  21. Dell’Acqua, F., Iannelli, G., Pittore, M., Wieland, M. (2012). Inventory data capture tools – remote sensing (Draft V0.3), report published by Global Earthquake Model Foundation. [Google Scholar]
  22. ImageCat (2011). Indonesia Building Exposure Development Report. Internal report to Australia-Indonesia Facility for Disaster Reduction (AIFDR) and the Indonesian Government, ImageCat, Inc., USA. [Google Scholar]
  23. Fiorini, M. (2015). Flood damage assessment assisted by satellite data, PhD Thesis, Scuola di Dottorato in Scienze e Tecnologie per l’informazione e la Conoscenza, XXVI Ciclo in Monitoraggio dei sistemi e gestione dei rischi ambientali, University of Genoa, Italy. [Google Scholar]
  24. Harb, M.M., De Vecchi, D., Dell’Acqua, F. (2015). Phisical Vulnerability Proxies from Remotes Sensing: Reviewing, Implementing and Disseminating Selected Techniques. Geoscience and Remote Sensing Magazine, IEEE, Vol.3, No.1, pp.20–33. [CrossRef] [Google Scholar]
  25. Rapid Analysis and Spatialization of Risk (RASOR) project (2014). Working Package 8.1: Definition of vulnerability, functionality and criticality functions. [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.