Open Access
E3S Web Conf.
Volume 7, 2016
3rd European Conference on Flood Risk Management (FLOODrisk 2016)
Article Number 05002
Number of page(s) 8
Section Physical, economic and environmental consequences
Published online 20 October 2016
  1. André C., Monfort D., Bouzit M., and Vinchon C.: Contribution of insurance data to cost assessment of coastal flood damage to residential buildings: insights gained from Johanna (2008) and Xynthia (2010) storm events, Nat. Hazards Earth Syst. Sci., 13, 2003–2012, doi:10.5194/nhess-13-2003-2013, 2013. [Google Scholar]
  2. Apel H., Aronica G. T., Kreibich H., and Thieken A. H.: Flood risk analyses – how detailed do we need to be?, Nat. Hazards, 49, 79–98, 2009. [Google Scholar]
  3. Barton C., Viney E., Heinrich L., and Turnley M.: The Reality of Determining Urban Flood Damages, in: NSW Floodplain Management Authorities Annual Conference, Sydney, 2003. [Google Scholar]
  4. Bundaberg Regional Council: Burnett River Floodplain – Bundaberg Ground Elevations [WWW Document], available at: (last access: 30 September 2015), 2013a. [Google Scholar]
  5. Bundaberg Regional Council: Burnett River Catchment Map [WWW Document], available at: (last access: 30 September 2015), 2013b. [Google Scholar]
  6. Bundaberg Regional Council: 2013 Flood Calibration Map – Paradise Dam to Bundaberg Port [WWW Document], available at: (last access: 30 September 2015), 2013c. [Google Scholar]
  7. Bureau of Transport Economics: Economic Costs of Natural Disasters in Australia, Commonwealth of Australia, Canberra, 2001. [Google Scholar]
  8. Cammerer H., Thieken A. H., and Lammel J.: Adaptability and transferability of flood loss functions in residential areas, Nat. Hazards Earth Syst. Sci., 13, 3063–3081, doi:10.5194/nhess-13-3063-2013, 2013. [CrossRef] [Google Scholar]
  9. Chai T. and Draxler R. R.: Root mean square error (RMSE) or mean absolute error (MAE)? – Arguments against avoiding RMSE in the literature, Geosci. Model Dev., 7, 1247–1250, doi:10.5194/gmd-7-1247-2014, 2014. [CrossRef] [Google Scholar]
  10. Chang L. F., Lin C. H., and Su M. D.: Application of geographic weighted regression to establish flood damage functions reflecting spatial variation, Water SA, 34, 209–216, 2008. [Google Scholar]
  11. Comiskey J. J.: Overview of Flood Damages Prevented by U.S. Army Corps of Engineers Flood Control Reduction Programs and Activities, J. Contemp. Water Res. Educ., 130, 13–19, 2005. [CrossRef] [Google Scholar]
  12. Dewals B. J., Giron E., Ernst J., Hecq W., and Pirotton M.: Integrated assessment of flood protection measures in the context of climate change: Hydraulic modelling and economic approach, Environ. Econ. Invest. Assess. II, 108, 149–159, 2008. [Google Scholar]
  13. Dunford M. A., Power L., and Cook B.: National Exposure Information System (NEXIS) Building Exposure – Statistical Area Level 1 (SA1) [WWWDocument], available at: (last access: 15 July 2015), 2014. [Google Scholar]
  14. Elmer F., Thieken A. H., Pech I., and Kreibich H.: Influence of flood frequency on residential building losses, Nat. Hazards Earth Syst. Sci., 10, 2145–2159, doi:10.5194/nhess-10-2145-2010, 2010. [CrossRef] [Google Scholar]
  15. Elmer F., Hoymann J., Düthmann D., Vorogushyn S., and Kreibich H.: Drivers of flood risk change in residential areas, Nat. Hazards Earth Syst. Sci., 12, 1641–1657, doi:10.5194/nhess-12-1641-2012, 2012. [CrossRef] [Google Scholar]
  16. Emanuelsson M. A. E., Mcintyre N., Hunt C. F., Mawle R., Kitson J., and Voulvoulis N.: Flood risk assessment for infrastructure networks, J. Flood Risk Manage., 7, 31–41, 2014. [Google Scholar]
  17. FEMA: Multi-Hazard Loss Estimation Methodology, Flood Model: Hazus-MH Technical Manual. Department of Homeland Security, Federal Emergency Management Agency, Mitigation Division, Washington, D.C., 2012. [Google Scholar]
  18. Geoscience Australia: Flood Vulnerability Functions for Australian Buildings Summary of the Current Geoscience Australia Model Suite, Geoscience Australia, Canberra, 2012. [Google Scholar]
  19. Gissing A. and Blong R.: Accounting for variability in commercial flood damage estimation, Aust. Geogr. 35, 209–222, 2004. [CrossRef] [Google Scholar]
  20. Jongman B., Kreibich H., Apel H., Barredo J. I., Bates P. D., Feyen L., Gericke A., Neal J., Aerts J. C. J. H., and Ward P. J.: Comparative flood damage model assessment: towards a European approach, Nat. Hazards Earth Syst. Sci., 12, 3733–3752, doi:10.5194/nhess-12-3733-2012, 2012. [Google Scholar]
  21. Kaplan S. and Garrick B. J.: On the quantitative definition of risk, Risk Anal., 1, 11–27, 1981. [CrossRef] [Google Scholar]
  22. Kelman I. and Spence R.: An overview of flood actions on buildings, Eng. Geol., 73, 297–309, 2004. [Google Scholar]
  23. Kourgialas N. N. and Karatzas G. P.: A hydroeconomic modelling framework for flood damage estimation and the role of riparian vegetation, Hydrol. Process., 27, 515–531, 2012. [Google Scholar]
  24. Kreibich H. and Thieken A. H.: Assessment of damage caused by high groundwater inundation, Water Resour. Res., 44, 1–14, 2008. [CrossRef] [Google Scholar]
  25. Kreibich H., Thieken A. H., Petrow Th., Müller M., and Merz B.: Flood loss reduction of private households due to building precautionary measures – lessons learned from the Elbe flood in August 2002, Nat. Hazards Earth Syst. Sci., 5, 117–126, doi:10.5194/nhess-5-117-2005, 2005. [Google Scholar]
  26. Kreibich H., Seifert I., Merz B., and Thieken A. H.: Developmentof FLEMOcs – a new model for the estimation of flood losses in the commercial sector, Hydrol. Sci. J., 55, 1302–1314, 2010. [Google Scholar]
  27. Kundzewicz Z. W., Ulbrich U., Brücher T., Graczyk D., Krüger A., Leckebusch G. C., Menzel L., Pinskwar I., Radziejewski M., and Szwed M.: Summer floods in Central Europe – Climate change track?, Nat. Hazards, 36, 165–189, 2005. [CrossRef] [Google Scholar]
  28. Llasat M. C., Marcos R., Llasat-Botija M., Gilabert J., Turco M., and Quintana-Seguí P.: Flash flood evolution in North-Western Mediterranean, Atmos. Res., 149, 230–243, 2014. [CrossRef] [Google Scholar]
  29. McBean E., Fortin M., and Gorrie J.: A critical analysis of residential flood damage estimation curves, Can. J. Civ. Eng. 13, 86–94, 1986. [CrossRef] [Google Scholar]
  30. Merz B., Kreibich H., Thieken A., and Schmidtke R.: Estimation uncertainty of direct monetary flood damage to buildings, Nat. Hazards Earth Syst. Sci., 4, 153–163, doi:10.5194/nhess-4-153-2004, 2004. [Google Scholar]
  31. Merz B., Kreibich H., Schwarze R., and Thieken A.: Review article “Assessment of economic flood damage”, Nat. Hazards Earth Syst. Sci., 10, 1697–1724, doi:10.5194/nhess-10-1697-2010, 2010. [Google Scholar]
  32. Merz B., Kreibich H., and Lall U.: Multi-variate flood damage assessment: a tree-based data-mining approach, Nat. Hazards Earth Syst. Sci., 13, 53–64, doi:10.5194/nhess-13-53-2013, 2013. [CrossRef] [Google Scholar]
  33. Meyer V., Becker N., Markantonis V., Schwarze R., van den Bergh J. C. J. M., Bouwer L. M., Bubeck P., Ciavola P., Genovese E., Green C., Hallegatte S., Kreibich H., Lequeux Q., Logar I., Papyrakis E., Pfurtscheller C., Poussin J., Przyluski V., Thieken A. H., and Viavattene C.: Review article: Assessing the costs of natural hazards – state of the art and knowledge gaps, Nat. Hazards Earth Syst. Sci., 13, 1351–1373, doi:10.5194/nhess-13-1351-2013, 2013. [Google Scholar]
  34. Molinari D.: FLOOD EARLY WARNING SYSTEMS PERFORMANCE: an approach at the warning chain perspective. PhD Thesis, Politecnico di Milano, 2011. [Google Scholar]
  35. Molinari D., Ballio F., and Menoni S.: Modelling the benefits of flood emergency management measures in reducing damages: a case study on Sondrio, Italy, Nat. Hazards Earth Syst. Sci., 13, 1913–1927, doi:10.5194/nhess-13-1913-2013, 2013. [CrossRef] [Google Scholar]
  36. Molinari D., Ballio F., Handmer H., and Menoni S.: On the modeling of significance for flood damage assessment, Int. J. Disaster Risk Reduct., 10, 381–391, 2014a. [CrossRef] [Google Scholar]
  37. Molinari D., Menoni S., Aronica G. T., Ballio F., Berni N., Pandolfo C., Stelluti M., and Minucci G.: Ex post damage assessment: an Italian experience, Nat. Hazards Earth Syst. Sci., 14, 901–916, doi:10.5194/nhess-14-901-2014, 2014b. [Google Scholar]
  38. Nadal N. C., Zapata R. E., Pagán I., López R., and Agudelo J.: Building Damage due to Riverine and Coastal Floods. J. Water Resour. Plan. Manag., 136, 327–336, 2010. [CrossRef] [Google Scholar]
  39. Office of Environment and Heritage; New South Wales Government: Residential Flood Damage and supporting calculation spreadsheet [WWW Document], available at: (last access: 30 September 2015), 2007. [Google Scholar]
  40. Queensland Department of Natural Resources and Mines: Interactive Floodcheck map [WWW Document], available at:, last access: 30 September 2015. [Google Scholar]
  41. Queensland Government: Queensland Government Statistician’s Office, Queensland Regional Profiles, Bundaberg Statistical Area Level 2 (SA2) [WWW Document], available at: (last access: 15 July 2015), 2011a. [Google Scholar]
  42. Queensland Government Queensland Government Statistician’s Office, Queensland Regional Profiles, Maranoa Regional Council [WWW Document], available at: (last access: 30 April 2015), 2011b. [Google Scholar]
  43. Queensland Government: Queensland 2013 Flood Recovery Plan(for the events of January – February 2013) [WWW Document],available at: (last access: 15 July 2015), 2013. [Google Scholar]
  44. Rawlinsons: Australian Construction Cost Guide 2014, 32nd Edn., Welshpool Publishing, Western Australia: Rawlinsons, 2014. [Google Scholar]
  45. Scawthorn C., Flores P., Blais N., Seligson H., Tate E., Chang S., Mifflin E., Thomas W., Murphy J., Jones C., and Lawrence M.: HAZUS-MH Flood Loss Estimation Methodology. II. Damage and Loss Assessment, Nat. Hazards Rev., 7, 72–81, 2006. [CrossRef] [Google Scholar]
  46. Schröter K., Kreibich H., Vogel K., Riggelsen C., Scherbaum F., and Merz B.: How useful are complex flood damage models?, Water Resour. Res., 50, 3378–3395, 2014. [CrossRef] [Google Scholar]
  47. Seifert I., Kreibich H., Merz B., and Thieken A. H.: Application and validation of FLEMOcs – a flood-loss estimation model for the commercial sector, Hydrol. Sci. J., 55, 1315–1324, 2010. [CrossRef] [Google Scholar]
  48. Smith D.: Flood damage estimation-A review of urban stage damage curves and loss function, Water SA, 20, 231–238, 1994. [Google Scholar]
  49. Sturgess R.: Rapid Appraisal Method (RAM) for Floodplain Management, 2000. [Google Scholar]
  50. Thieken A. H., Müller M., Kreibich H., and Merz B.: Flood damage and influencing factors: New insights from the August 2002 flood in Germany, Water Resour. Res., 41, 1–16, 2005. [CrossRef] [Google Scholar]
  51. Thieken A. H., Kreibich H., and Merz B.: Improved modelling of flood losses in private households, in: German-Polish Seminar “Natural Systems and Global Change”, 1–10, 2006. [Google Scholar]
  52. Thieken A. H., Olschewski A., Kreibich H., Kobsch S., and Merz B.: Development and evaluation of FLEMOps – a new Flood Loss Estimation MOdel for the private sector. Flood Recover. Innov. Response, WIT Press, 315–324, 2008. [CrossRef] [Google Scholar]
  53. Thieken A. H., Ackermann V., Elmer F., Kreibich H., Kuhlmann B., Kunert U., Maiwald H., Merz B., Müller M., Piroth K., Schwarz J., Schwarze R., Seifert I., and Seifert J.: Methods for the evaluation of direct and indirect flood losses. In: RIMAX Contributions at the 4th International Symposium on Flood Defence (ISFD4), 1–10, 2009. [Google Scholar]
  54. UNISDR: UNISDR Terminology on Disaster Risk Reduction [WWW Document], available at: (last access: 30 April 2015), 2009. [Google Scholar]
  55. USACE: Economic Guidance Memorandum (EGM) 04-01, Generic Depth-Damage Relationships for Residential Structures with Basements, 2003. [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.