Open Access
Issue
E3S Web Conf.
Volume 7, 2016
3rd European Conference on Flood Risk Management (FLOODrisk 2016)
Article Number 06004
Number of page(s) 7
Section Loss-of-life estimation and modelling
DOI https://doi.org/10.1051/e3sconf/20160706004
Published online 20 October 2016
  1. Abt S.R., Wittler R.J., Taylor A., Love D.J. (1989) Human stability in a high flood hazard zone, Water Resources BulletinVol. 25 No.4, pp. 881–890 [Google Scholar]
  2. A. Barendregt, J.M. van Noortwijk, M.F.A.M. van Maarseveen, S.I.A. Tutert, M.H.P. Zuidgeest and K.M. van Zuilekom. (2002) Evacuation in case of possible flood (in Dutch). HKV lijn in water and University of Twente. [Google Scholar]
  3. Clausen, L.K. (1989) Potential Dam Failure: Estimation of Consequences, and Implications for Planning. Unpublished M.Phil. thesis at the School of Geography and Planning at Middlesex Polytechnic collaborating with Binnie and Partners, Redhill. [Google Scholar]
  4. BC Hydro. (2006) BC Hydro Life safety modeling environment V2.0 beta User manual. [Google Scholar]
  5. di Mauro M, de Bruijn K.M., Meloni M. (2012) Quantitative methods for estimating flood fatalities: towards the introduction of loss-of-life estimation in the assessment of flood risk. Natural Hazards, Vol. 63, 1083–1113. [CrossRef] [Google Scholar]
  6. Fiedler W., Osmun D., Engemoen W., Feinberg B. (2014) Reclamations’ new life loss estimation methodology. Paper presented at the 34th annual USSD conference, San Francisco 2014. [Google Scholar]
  7. T. Grothmann and F. Reusswig. (2006) People at risk of flooding: why some residents take precautionary action while others do not. Natural Hazards, Vol. 38, pp 101–120. [CrossRef] [Google Scholar]
  8. Graham, WJ (1999) A procedure for estimating loss of life caused by dam failure. Dam safety office report DSO-99–6 [Google Scholar]
  9. Gwynne, S., Galea, E.R., Owen, M., P.J. Lawrence (2002). An investigation of the aspects of occupant behaviour required for evacuation modeling. Edited by P.R. DeCicco. Vol. 2, Evacuation from fires. New York: Baywood Publishing Company, Inc., Amityville. [Google Scholar]
  10. IPET (Interagency Performance Evaluation Task Force) (2007) Performance evaluation of the New Orleans and Southeast Louisiana hurricane protection system—volume VII: the consequences, Final report 26 March 2007 [Google Scholar]
  11. Kolen B. (2013) Certainty of uncertainty in evacuation for threat driven responses, Principles of adaptive evacuation management for flood risk planning in the Netherlands. PhD Thesis University of Nijmegen. [Google Scholar]
  12. Johnstone W.M., Sakamoto D., Assaf H., Bourban S. (2005) Architecture, Modelling framework and validation of BC Hydro’s Virtual Reality Life Safety Model, in: Vrijling et al. (eds.) Proceedings of the International Symposium on Stochastic Hydraulics, May 23, 24 2005, Nijmegen, the Netherlands [Google Scholar]
  13. Jonkman, S.N., Penning-Rowsell, E. (2008) Human instability in flood flows, Journal of the American Water Resources Association (JAWRA)Vol. 44 No. 4 August 1008, pp. 1–11 [CrossRef] [Google Scholar]
  14. Jonkman, S.N. (2007) Loss of life estimation in flood risk assessment. Theory and applications. PhD thesisy Delft Universit (354 pag.) [Google Scholar]
  15. Jonkman, S.N., Hiel, L.A., Bea, R.G., Foster, H., Tsioulou, A., Arroyo, P., Stallard, T., Harris, L. (2012) Integrated Risk Assessment for the Natomas Basin (CA) Analysis of Loss of Life and Emergency Management for Floods. ASCE Natural Hazards Review,Vol. 13/4 (November 2012), pp. 297–309. [CrossRef] [Google Scholar]
  16. Jonkman, S.N., Maaskant, B., Kolen, B., Zethof, M., Lehman, W. (2013b) Loss of life, evacuation and emergency management–comparison and application to case studies in the USA. Final draft Research Report Delft University of Technology. [Google Scholar]
  17. Jonkman, S.N., Vrijling, J.K., Vrouwenvelder, A.C.W.M. (2008) Methods for the estimation of loss of life due to floods: A literature review and a proposal for a new method, Natural Hazards,Vol.46/3,pp. 353–389 [Google Scholar]
  18. Jonkman, S.N. (2013a) Review of case histories. Working document [Google Scholar]
  19. Kolen, B., Kok, M., Helsloot, I. and Maaskant., B. (2012) EvacuAid: a probabilistic evacuation model to determine the expected loss of life for different mass evacuation strategies. Risk Analysis doi: 10.1111/j.1539-6924.2012.01932.x. [Google Scholar]
  20. Lindell, M.K. and Perry., R. (1992) Behavioural Foundations of Community Emergency Planning. Washington DC: Hemisphere. [Google Scholar]
  21. Lindell, M.K., Prater, C.S., Perry, R.W. and Wu., J.Y. (2002) EMBLEM: an empirically based large-scale evacuation time estimate model: Hazard reduction & recovery center Texas A&M University. [Google Scholar]
  22. McClelland, D.M., Bowles, D.S. (1999) Life-loss estimation: what can we learn from case histories. In:Proc. of the Australian Committee on Large Dams (ANCOLD) Annual Meeting, Jindabyne, New South Wales, Australia. [Google Scholar]
  23. Mileti, DS. Sorensen, JH. (2015) A Guide to Public Alerts and Warnings for Dam and Levee Emergencies. USACE [Google Scholar]
  24. Mens, M.J.P., van der Vat, M. and Lumbroso., D. (2008) A comparison of evacuation models for flood event management: Application on the Schelde and Thames estuaries. In Flood Risk Management: Research and practice, edited by 2009 Samuels et al(eds.). London: Taylor & Francis Group. [Google Scholar]
  25. Pel, A.J., Bliemer, M.C.J. and Hoogendoorn., S.P. (2008). EVAQ: A New Analytical Model for Voluntary and Mandatory Evacuation Strategies on Time-varying Networks. In Proceedings of the 11th International IEEE Conference on Intelligent Transportation Systems. Beijing, China. [Google Scholar]
  26. Pel., A.J. (2011) Transportation modelling for regional evacuations, Delft University of technology. [Google Scholar]
  27. Peng, M. Zhang, L. M. (2012) Analysis of human risks due to dam-break floods—part 1: a new model based on Bayesian networks Nat Hazards (2012) 64:903–933 [Google Scholar]
  28. Pleijter, G., Kolen, B., Jonkman, S.N., Bouwman., A. (2015) Slimmer evacueren door overstromingen. Magazine Nationale Veiligheid en Crisisbeheersing. P55–56. [Google Scholar]
  29. Penning-Rowsell, E., Floyd, P., Ramsbottom, D., Surendran, S. (2005) Estimating injury and loss of life in floods: A deterministic framework, Natural Hazards Vol. 36 No. 1-2 pp. 43–64 [Google Scholar]
  30. Petruccelli, U. (2003) Urban evacuation in seismic emergency conditions. ITE Journal; 73(8):25–30. [Google Scholar]
  31. Smith, G. and McLuckie, D. (2015) Delineating hazardous flood conditions to people and property. In: Proc. Of FMA conference, Brisbane Australia. http://www.floodplainconference.com/papers2015/Grantly%20Smith%20Full%20Paper.pdf [Google Scholar]
  32. Sorensen., J.H. (2000) Hazard warning systems: review of 20 years of progress. Natural hazard reviewed 1:119–125. [CrossRef] [Google Scholar]
  33. Tapsell, S.M. and Tunstall, S.M. (2008) ‘“I wish I’d never heard of Banbury”: the relationship between ‘place’ and the health impacts of flooding’. Health & Place(forthcoming June 2008) Vol. 14 (2), 133–154. [CrossRef] [PubMed] [Google Scholar]
  34. USACE(2011a) HEC-FIA, Flood Impact Analysis Software, Draft certification report, November 2011 [Google Scholar]
  35. van Zuilekom, K.M., van Maarseveen, M.F.A.M. and van der Doef., M.R. (2005) A Decision Support System for preventive evacuation of people. Geo-information for disaster management,edited by Zlatanova Van Oosterom, P., Fendel, S., E. M.: Springer Berlin Heidelberg. [Google Scholar]
  36. Vinet, F., Lumbroso, D., Defossez, S., Boissier, L. (2012) A comparative analysis of the loss of life during two recent floods in France: the sea surge caused by the storm Xynthia and the flash flood in Var. Natural Hazards April 2012, Vol. 61/3, pp 1179–1201 [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.