Open Access
Issue
E3S Web Conf.
Volume 7, 2016
3rd European Conference on Flood Risk Management (FLOODrisk 2016)
Article Number 07008
Number of page(s) 9
Section Critical infrastructure and cascading impacts
DOI https://doi.org/10.1051/e3sconf/20160707008
Published online 20 October 2016
  1. UNISDR. (2015). Sendai Framework for Disaster Risk Reduction 2015-2030. Sendai, Japan. 37 p. [Google Scholar]
  2. Ventura C.E., Juarez Garcia H., and Marti J.M. (2010). Understanding Interdependencies among Critical Infrastructures. 9th U.S. National and 10th Canadian Conference on Earthquake Engineering. Toronto, Ontario, Canada. [Google Scholar]
  3. Public Safety Canada. (2009). National Strategy for Critical Infrastructure. Canada. 12 p. [Google Scholar]
  4. The Council of the European Union. (2008). Council Directive 2008/114/EC of 8 December 2008 on the indentification and designation of European critical infrastructures and the assessment of the need to improve their protection. Official Journal of the European Union, 8 December,75–82. [Google Scholar]
  5. The Homeland Security. (2013). NIPP 2013: Partnering for Critical Infrastructure Security and Resilience. 57 p. [Google Scholar]
  6. Rinaldi S.M., Peerenboom J.P., and Kelly T.K. (2001). Identifying, Understanding, and Analyzing Critical Infrastructure Interdependencies. IEEE Control Systems Magazine, 21,11–25. [CrossRef] [Google Scholar]
  7. Kröger W. (2008). Critical infrastructures at risk: A need for a new conceptual approach and extended analytical tools. Reliability Engineering & System Safety, 93,1781–1787. [Google Scholar]
  8. Haimes Y.Y. (2004). Risk Modeling, Assessment, and Management. Charlottesville: John Wiley & Sons, lnc. 860 p. [Google Scholar]
  9. Le Moigne J.-L. (1999). La modélisation des systèmes complexes. Dunod. 178 p. [Google Scholar]
  10. Folke C. (2006). Resilience: The emergence of a perspective for social–ecological systems analyses. Global Environmental Change, 16,253–267. [CrossRef] [Google Scholar]
  11. Bach C., Bouchon S., Fekete A., Birkmann J., and Serre D. (2013). Adding value to critical infrastructure research and disaster risk management: the resilience concept. S.A.P.I.EN.S, 6. [Google Scholar]
  12. Kakderi K., Argyroudis S., and Pitilakis K. (2011). State-of-the-art literature review of methodologies to assess the vulnerability of a “system of systems.” 42 p. [Google Scholar]
  13. Comes T. and Van de Walle B. (2014). Measuring Disaster Resilience : The Impact of Hurricane Sandy on Critical Infrastructure Systems. In: Hiltz SR, Pfaff MS, Plotnick L, Shih PC, editors. 11th International ISCRAM Conference. University Park, Pennsylvania, USA. pp. 195–204. [Google Scholar]
  14. Fekete A. (2011). Common criteria for the assessment of critical infrastructures. International Journal of Disaster Risk Science, 2,15–24. [CrossRef] [Google Scholar]
  15. Gallopín G.C. (2006). Linkages between vulnerability, resilience, and adaptive capacity. Global Environmental Change, 16,293–303. [CrossRef] [Google Scholar]
  16. Lhomme S., Serre D., Diab Y., and Laganier R. (2011). A methodology to produce interdependent networks disturbance scenarios. International Conference on Vulnerability and Risk Analysis and Management. Hyattsville, United States. pp. 724–731. [Google Scholar]
  17. Lhomme S., Serre D., Diab Y., and Laganier R. (2013). Analyzing resilience of urban networks: A preliminary step towards more flood resilient cities. Natural Hazards and Earth System Science, 13,221–230. [Google Scholar]
  18. Plessis C. (2008). Understanding cities as socialecological systems. World Sustainable Building Conference – SB’08. Melbourne, Australia. [Google Scholar]
  19. Alberti M., Marzluff J.M., Shulenberger E., Bradley G., Ryan C., and Zumbrunnen C. (2003). Integrating human into ecology: Opportunities and challenges for studying urban ecosytems. BioScience, 53, 1169–1179. [CrossRef] [Google Scholar]
  20. Turner B.L., Kasperson R.E., Matson P.A., McCarthy J.J., Corell R.W., Christensen L., Eckley N., Kasperson J.X., Luers A., Martello M.L., Polsky C., Pulsipher A., Schiller A. (2003). A framework for vulnerability analysis in sustainability science. Proceedings of the National Academy of Sciences of the United States of America, 100,8074–8079. [Google Scholar]
  21. Berry B.J.L. (1964). Cities as systems within systems of cities. Papers of the Regional Science Association, 13, 149–163. [Google Scholar]
  22. Aschan-Leygonie C. (2000). Vers une analyse de la résilience des systèmes spatiaux. L’Espace Géographique, 29, 64–77. [Google Scholar]
  23. Birkmann J. (2007). Risk and vulnerability indicators at different scales: Applicability, usefulness and policy implications. Environmental Hazards, 7, 20–31. [CrossRef] [Google Scholar]
  24. Weichselgartner J. and Obersteiner M. (2002). Knowing sufficient and applying more: Challenges in hazards management. Environmental Hazards, 4,73–77. [CrossRef] [Google Scholar]
  25. Greiving S. and Glade T. (2013). Risk Governance. In: Bobrowsky PT, editor. Encyclopedia of Natural Hazards. Encyclopedia of Earth Sciences Series. Springer Netherlands. pp. 863–870. [CrossRef] [Google Scholar]
  26. International Risk Governance Council. (2006). Managing and Reducing Social Vulnerabilities from Coupled Critical Infrastructures. Geneva. 1–63 p. [Google Scholar]
  27. La Porte T.M. (2006). Organizational Strategies for Complex System Resilience, Reliability and Adaptation. In: Auerswald PE, Branscomb LM, La Porte TM, Michel-Kerjan O. E, editors. Seeds of Disaster, Roots of Response. How Private Action Can Reduce Public Vulnerability. Cambridge University Press. pp. 135–153. [Google Scholar]
  28. Geels F.W. (2004). From sectoral systems of innovation to socio-technical systems: Insights about dynamics and change from sociology and institutional theory. Research Policy, 33, 897–920. [CrossRef] [Google Scholar]
  29. Saurin T.A. and Sosa Gonzalez S. (2013). Assessing the compatibility of the management of standardized procedures with the complexity of a sociotechnical system: Case study of a control room in an oil refinery. Applied Ergonomics, 44, 811–823. [CrossRef] [PubMed] [Google Scholar]
  30. Hollnagel E., Pariès J., Woods D.D., and Wreathall J. (2012). Resilience Engineering in Practice: A Guidebook. Ashgate Publishing Limited. 362 p. [Google Scholar]
  31. Dekker S. (2012). Complexity, signal detection, and the application of ergonomics: Reflections on a healthcare case study. Applied Ergonomics, 43, 468–472. [CrossRef] [PubMed] [Google Scholar]
  32. Weichselgartner J. (2014). Challenges and opportunities for building urban resilience. A/Z ITU Journal of the Faculty of Architecture, 11, 20–35. [Google Scholar]
  33. Folke C., Carpenter S., Elmqvist T., Gunderson L., Holling C. S., Walker B.H., Bengtsson J., Berkes F., Colding J., Danell K., Falkenmark M., Gordon L., Kasperson R., Kautsky N., Kinzig A., Levin S., Mäler K., Moberg F., Ohlsson L., Olsson P., Ostrom E., Reid W., Rockström J., Savenije H., Svedin U. (2002). Resilience and Sustainable Development: Building Adaptive Capacity in a World of Transformations. Stockholm. 1–74 p. [Google Scholar]
  34. Weichselgartner J. and Kelman I. (2014). Geographies of resilience: Challenges and opportunities of a descriptive concept. Progress in Human Geography. [Google Scholar]
  35. Pelling M. (2003). The vulnerability of cities: natural disasters and social resilience. Sterling. London: Earthscan Publications. 212 p. [Google Scholar]
  36. Rose A. (2011). Economic resilience to natural and man-made disasters: Multidisciplinary origins and contextual dimensions. Environmental Hazards [Google Scholar]
  37. Provitolo D. and Reghezza-Zitt M. (2015). Resilience and Vulnerability: From Opposition Towards a Continuum. In: Reghezza-Zitt M, Rufat S, editors. Resilience Imperative - Uncertainty, Risks and Disasters. ISTE Press. p. 262. [Google Scholar]
  38. Reggiani A., Nijkamp P., and Lanzi D. (2015). Transport resilience and vulnerability: The role of connectivity. Transportation Research Part A: Policy and Practice, 81, 4–15. [CrossRef] [Google Scholar]
  39. Ouyang M., Dueñas-Osorio L., and Min X. (2012). A three-stage resilience analysis framework for urban infrastructure systems. Structural Safety, 36-37, 23–31. [CrossRef] [Google Scholar]
  40. Apostolakis G.E. and Lemon D.M. (2005). A screening methodology for the identification and ranking of infrastructure vulnerabilities due to terrorism. Risk analysis : an official publication of the Society for Risk Analysis, 25, 361–376. [CrossRef] [PubMed] [Google Scholar]
  41. Cagno E., De Ambroggi M., Grande O., and Trucco P. (2011). Risk analysis of underground infrastructures in urban areas. Reliability Engineering and System Safety, 96, 139–148. [CrossRef] [Google Scholar]
  42. Trucco P., Cagno E., and De Ambroggi M. (2012). Dynamic functional modelling of vulnerability and interoperability of Critical Infrastructures. Reliability Engineering & System Safety, 105, 51–63. [CrossRef] [Google Scholar]
  43. Gonzva M., Diab Y., Barroca B., and Gautier P.-E. (2014). Résilience des systèmes de transport guidé face aux risques naturels. Congrès Lambda-Mu 19 de Maîtrise des Risques et Sûreté de Fonctionnement. Dijon - France. p. 10. [Google Scholar]
  44. Gonzva M., Barroca B., Gautier P.-E., and Diab Y. (2015). A modelling of disruptions cascade effect within a rail transport system facing a flood hazard. 48th ESReDA Seminar on Critical Infrastructures Preparedness: Status of Data for Resilience Modelling, Simulation and Analysis. Wroclaw, Poland. [Google Scholar]
  45. Noyes D. and Peres F. (2007). Analyse des systèmes - Sûreté de Fonctionnement. Techniques de l’ingénieur, 9. [Google Scholar]
  46. Serre D., Peyras L., Curt C., Boissier D., and Diab Y. (2007). Assessment of civil engineering hydraulic infrastructures. Canadian Geotechnical Journal, 1298–1313. [CrossRef] [Google Scholar]
  47. Lhomme S. (2012). Les réseaux techniques comme vecteur de propagation des risques en milieu urbain-Une contribution théorique et pratique à l’analyse de la résilience urbaine. PhD Thesis - Paris-Diderot University. [Google Scholar]
  48. Serre D. (2005). Evaluation de la performance des digues de protection contre les inondations Modélisation de critères de décision dans un Système d’Information Géographique. Habilitation to supervise research Thesis - Marne-la-Vallée University. [Google Scholar]
  49. Vuillet M. (2012). Élaboration d’un modèle d’aide à la décision basé sur une approche probabiliste pour l’évaluation de la performance des digues fluviales. PhD Thesis - Paris-Est Marne-la-Vallée University. [Google Scholar]
  50. Balsells M. (2015). Résilience à l’échelle du quartier : pratiques, théories, et opérationnalisations face aux risques d’inondation [Art de Bâtir et Urbanisme]. PhD Thesis – Mons University. [Google Scholar]
  51. Zwingelstein G. (1996). La maintenance basée sur la fiabilité. Hermes Sci. 666 p. [Google Scholar]
  52. Talon A., Boissier D., and Peyras L. (2009). Analyse de risques : Identification et estimation : Démarches d’analyse de risques - Méthodes qualitatives d’analyse de risques. [Google Scholar]
  53. Dubrova E. (2013). Fundamentals of Dependability. Fault-Tolerant Design. Springer-Verlag New York. p. 185. [Google Scholar]
  54. Johansson J. (2010). Risk and Vulnerability Analysis of Interdependent Technical Infrastructures Addressing Socio-Technical Systems. PhD Thesis - Lund University. [Google Scholar]
  55. Yusta J.M., Correa G.J., and Lacal-Arántegui R. (2011). Methodologies and applications for critical infrastructure protection: State-of-the-art. Energy Policy, 39, 6100–6119. [CrossRef] [Google Scholar]
  56. Verwater-Lukszo Z. and Bouwmans I. (2005). Intelligent complexity in networked infrastructures. IEEE International Conference on Systems, Man and Cybernetics 2005. pp. 2378–2383. [Google Scholar]
  57. Checkland P. (1999). Systems Thinking, Systems Practice: Includes a 30 Year Retrospective. Chichester: John Wiley and Sons Ltd. 424 p. [Google Scholar]
  58. Einarsson S. and Rausand M. (1998). An Approach to Vulnerability Analysis of Complex Industrial Systems. Risk Analysis, 18, 535–546. [CrossRef] [Google Scholar]
  59. Holland J. (1996). Hidden Order: How Adaptation Builds Complexity. Basic Books. 208 p. [Google Scholar]
  60. Arthur W.B., Durlauf S.N., and Lane D. (1997). Introduction. The Economy as an Evolving Complex System II. Santa Fe Institute Series. Westview Press. p. 608. [Google Scholar]
  61. Lhomme S., Toubin M., Serre D., Diab Y., and Laganier R. (2011). From technical resilience toward urban services resilience. In: Hollnagel E, Rigaud É, Besnard D, editors. 4th Resilience Engineering Symposium. Sophia-Antipolis, France: Presses des Mines. pp. 172–178. [CrossRef] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.