Open Access
Issue
E3S Web Conf.
Volume 7, 2016
3rd European Conference on Flood Risk Management (FLOODrisk 2016)
Article Number 11010
Number of page(s) 7
Section Risk evaluation and assessment
DOI https://doi.org/10.1051/e3sconf/20160711010
Published online 20 October 2016
  1. Kjeldsen T. R., Macdonald N., Lang M., Mediero L., Albuquerque T., Bogdanowicz E. et al. (2014). Documentary evidence of past floods in Europe and their utility in flood frequency estimation. Journal of Hydrology 517, pp. 963–973. [CrossRef] [Google Scholar]
  2. Wetter O., Pfister C., Weingartner R., Luterbacher J., Reist T., Trösch J. (2011). The largest floods in the High Rhine basin since 1268 assessed from documentary and instrumental evidence. Hydrological Sciences Journal 56(5), pp. 733–758 [CrossRef] [Google Scholar]
  3. Bodoque J. M., Díez-Herrero A., Eguibar M. A., Benito G., Ruiz-Villanueva V., Ballesteros-Cánovas J. A. (2015). Challenges in paleoflood hydrology applied to risk analysis in mountainous watersheds–A review. Journal of Hydrology 529, pp. 449–467. [CrossRef] [Google Scholar]
  4. Herget J., Roggenkamp T., Krell M. (2014). Estimation of peak discharges of historical floods. Hydrol. Earth Syst. Sci. 18(10), pp. 4029–4037. [CrossRef] [Google Scholar]
  5. Zbinden E. (2011). Das Magdalenen-Hochwasser von 1342–der «hydrologische Gau» in Mitteleuropa. Wasser, Energie, Luft 103(3), pp. 193–203. [Google Scholar]
  6. Masoero A., Claps P., Asselman N.E.M., Mosselman E., Di Baldassarre G. (2013). Reconstruction and analysis of the Po River inundation of 1951. Hydrol. Process. 27(9), pp. 1341–1348 [CrossRef] [Google Scholar]
  7. Schulte L., Peña J. C., Carvalho F., Schmidt T., Julià R., Llorca J., Veit H. (2015). A 2600-year history of floods in the Bernese Alps, Switzerland: frequencies, mechanisms and climate forcing. Hydrol. Earth Syst. Sci. 19(7), pp. 3047–3072. [CrossRef] [Google Scholar]
  8. Benito G., Brázdil R., Herget J., Machado M. J. (2015). Quantitative historical hydrology in Europe. Hydrol. Earth Syst. Sci. 19(8), pp. 3517–3539. [CrossRef] [Google Scholar]
  9. Himmelsbach I., Glaser R., Schoenbein J., Riemann D., Martin B. (2015). Reconstruction of flood events based on documentary data and transnational flood risk analysis of the Upper Rhine and its French and German tributaries since AD 1480. Hydrol. Earth Syst. Sci. 19(10), pp. 4149–4164 [CrossRef] [Google Scholar]
  10. Sear D. A., Newson M. D. (2003). Environmental change in river channels: a neglected element. Towards geomorphological typologies, standards and monitoring. Science of The Total Environment 310(1-3), pp. 17–23. [CrossRef] [Google Scholar]
  11. Spaliviero M. (2003). Historic fluvial development of the Alpine-foreland Tagliamento River, Italy, and consequences for floodplain management. Geomorphology 52(3-4), pp. 317–333. [CrossRef] [Google Scholar]
  12. Remo J. W.F., Pinter N. (2007). Retro-modeling the Middle Mississippi River. Journal of Hydrology 337(3-4), pp. 421–435. [CrossRef] [Google Scholar]
  13. Pinter N., Heine R.A. (2005). Hydrodynamic and morphodynamic response to river engineering documented by fixed-discharge analysis, Lower Missouri River, USA. Journal of Hydrology 302(1-4), pp. 70–91. [CrossRef] [Google Scholar]
  14. Wirth S. B., Girardclos S., Rellstab C., Anselmetti F. S. (2011). The sedimentary response to a pioneer geo-engineering project: Tracking the Kander River deviation in the sediments of Lake Thun (Switzerland). Sedimentology 58(7), S. 1737–1761. [CrossRef] [Google Scholar]
  15. Vischer D. (2003). Die Geschichte des Hochwasserschutzes in der Schweiz. Bundesamt für Wasser und Geologie. Bern [Google Scholar]
  16. Girod S. (2015). Rekonstruktion des historischen Flusslaufes der Aare zwischen Thun und Bern. Bsc Thesis. University of Bern, Bern. Institute of Geography. [Google Scholar]
  17. Zaugg T. (2015). Rekonstruktion des historischen Flusslaufes der Aare zwischen der Aareschlucht und dem Brienzersee. Bsc Thesis. University of Bern, Bern. Institute of Geography. [Google Scholar]
  18. Arnold K. (2015). Rekonstruktion des historischen Flusslaufes der Gürbe. Bsc Thesis. University of Bern, Bern. Institute of Geography. [Google Scholar]
  19. Vetsch D., Siviglia A., Ehrbar D., Facchini M., Gerber M., Kammerer S., Peter S., Vonwiller L., Volz C., Farshi D., Mueller R., Rousselot P., Veprek R., Faeh R. (2016). BASEMENT–Basic Simulation Environment for Computation of Environmental Flow and Natural Hazard Simulations. ETH Zurich. Zurich. [Google Scholar]
  20. Fuchs S.; Keiler M.; Zischg A. (2015): A spatiotemporal multi-hazard exposure assessment based on property data. Nat. Hazards Earth Syst. Sci. 15(9), pp. 2127–2142. [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.