Open Access
Issue
E3S Web Conf.
Volume 9, 2016
3rd European Conference on Unsaturated Soils – “E-UNSAT 2016”
Article Number 11012
Number of page(s) 6
Section Water Retention Properties
DOI https://doi.org/10.1051/e3sconf/20160911012
Published online 12 September 2016
  1. P. Delage, M. Howat, Y.J. Cui. The relationship between suction and swelling properties in a heavily compacted unsaturated clay. Engineering Geology 50, 31–48 (1998) [CrossRef] [Google Scholar]
  2. A. Dueck. Laboratory results from hydro-mechanical tests on a water unsaturated bentonite. Engineering Geology 97 (1–2), 15–24 (2008) [CrossRef] [Google Scholar]
  3. M. Ajdari, G. Habibagahi, F. Masrouri. The role of suction and degree of saturation on the hydro-mechanical response of a dual porosity silt-bentonite mixture. Applied Clay Science 83–84, 83–90 (2013) [CrossRef] [Google Scholar]
  4. C. Gatabin, J. Talandier, F. Collin, R. Charlier, A.C. Dieudonné. Competing effects of volume change and water uptake on the water retention behaviour of a compacted MX-80 bentonite/sand mixture. Applied Clay Science 121–122, 57–62 (2016) [CrossRef] [Google Scholar]
  5. A.M. Tang, Y.J. Cui, T.T. Le. A study on the thermal conductivity of compacted bentonites. Applied Clay Science 41(3–4), 181–189 (2008) [CrossRef] [Google Scholar]
  6. E. Romero, A. Gens, A. Lloret. Water permeability water retention and microstructure of unsaturated compacted Boom Clay. Engineering Geology 54, 117–127 (1999) [CrossRef] [Google Scholar]
  7. C. Loiseau, Y.J. Cui, P. Delage. The gradient effect on the water flow through a compacted swelling soil. In: J.F.T. Juca, T.M.P. de Campos, F.A.M. Marinho (Eds), Unsaturated Soils, Proceedings of the 3rd International Conference on Unsaturated Soils (UNSAT2002), Recife, Brazil, 395–400 (2002) [Google Scholar]
  8. M.V. Villar. Water retention of two natural compacted bentonites. Clays and Clay Minerals 55(3), 311–322 (2007) [CrossRef] [Google Scholar]
  9. E. Romero, G. Della Vecchia, C. Jommi. An insight into the water retention properties of compacted clayey soils. Géotechnique 61(4), 313–328 (2011) [CrossRef] [Google Scholar]
  10. S.S. Agus, Y.F. Arifin, S. Tripathy, T. Schanz. Swelling pressure – suction relationship of heavily compacted bentonite–sand mixtures. Acta Geotechnica 8(2), 155–165 (2013) [CrossRef] [Google Scholar]
  11. A. Seiphoori, A. Ferrari, L. Laloui. Water retention behaviour and microstructural evolution of MX-80 bentonite during wetting and drying cycles. Géotechnique 64(9), 717–734 (2014) [Google Scholar]
  12. G. Della Vecchia, A.C. Dieudonne, C. Jommi, R. Charlier. Accounting for evolving pore size distribution in water retention models for compacted clays. International Journal of Numerical and Analytical Methods in Geomechanics 39(7), 702–723 (2015) [CrossRef] [Google Scholar]
  13. M.T. Van Genuchten. A closed-form equation for predicting the hydraulic conductivity of unsaturated soils. Soil Science Society of America Journal 44(5), 892–898 (1980) [CrossRef] [Google Scholar]
  14. R.H. Brooks, A.T. Corey. Hydraulic properties of porous media. Hydrological papers (Colorado State University) 3 (1964) [Google Scholar]
  15. D.A. Sun, D. Sheng, L. Xiang, S.W. Sloan. Elastoplastic prediction of hydro-mechanical behaviour of unsaturated soils under undrained conditions. Computers and Geotechnics 35(6), 845–852 (2008) [CrossRef] [Google Scholar]
  16. D. Masin. Predicting the dependency of a degree of saturation on void ratio and sucion using effective stress principle for unsaturated soils. International Journal for Numerical and Analytical Methods in Geomechanics 34, 73–90 (2010) [Google Scholar]
  17. S. Salager, M. Nuth, A. Ferrari, L. Laloui. Investigation into water retention behaviour of deformable soils. Canadian Geotechnical Journal 50, 200–208 (2013) [CrossRef] [Google Scholar]
  18. D. Gallipoli, A.W. Bruno, F. D’Onza, C. Mancuso. A bounding surface hysteretic water retention model for deformable soils. Géotechnique 65(10), 793–804 (2015) [CrossRef] [Google Scholar]
  19. M.M. Dubinin, L.V. Radushkevich Equation of the characteristic curve of activated charcoal. Proceedings of the academy of Sciences, Physical Chemistry Section, USSR 55, 331–333 (1947) [Google Scholar]
  20. A.C. Dieudonne, S. Levasseur, R. Charlier, G. Della Vecchia, C. Jommi. A water retention model for compacted clayey soils. In: S Pietruszcak, G.N. Pande (Eds.) Computational Geomechanics COMGEO III, Proceeding of the 3rd International Symposium on Computational Geomechanics, 23–31 (2013) [Google Scholar]
  21. Q. Wang, A.M. Tang, Y.J. Cui, P. Delage, J.D. Barnichon, W.M. Ye. The effects of technological voids on the hydromechanical behaviour of compacted bentonite-sand mixture. Soils and Foundations 53(2), 232–245 (2013) [CrossRef] [Google Scholar]
  22. S. Saba, P. Delage, N. Lenoir, Y.J. Cui, A.M. Tang, J.D. Barnichon. Further insight into the microstructure of compacted bentonite-sand mixture. Engineering Geology 168, 141–148 (2014) [CrossRef] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.