Open Access
E3S Web Conf.
Volume 9, 2016
3rd European Conference on Unsaturated Soils – “E-UNSAT 2016”
Article Number 16011
Number of page(s) 6
Section Water Transport Properties
Published online 12 September 2016
  1. De Leon F, Anders GJ (2008) Effects of Backfilling on Cable Ampacity Analyzed With the Finite Element Method. IEEE Trans Power Deliv 23:537–543. [Google Scholar]
  2. de Lieto Vollaro R, Fontana L, Vallati A (2011) Thermal analysis of underground electrical power cables buried in non-homogeneous soils. Appl Therm Eng 31:772–778. [CrossRef] [Google Scholar]
  3. Hanna MA, Chikhani AY, Salama MMA (1998) Thermal analysis of power cable systems in a trench in multi-layered soil. IEEE Trans Power Deliv 13:304–309. [CrossRef] [Google Scholar]
  4. Adams JI, Baljet AF (1968) The thermal behavior of cable backfill materials. IEEE Trans Power Appar Syst PAS- 87:1149–1161. [CrossRef] [Google Scholar]
  5. El-Kady MA (1982) Optimization of Power Cable and Thermal Backfill Configurations. IEEE Trans Power Appar Syst PAS- 101:4681–4688. [CrossRef] [Google Scholar]
  6. Mitchell JK, Abdel-hadi ON (1979) Temperature Distributions around Buried Cables. IEEE Trans Power App Syst 98:1158–1166. [CrossRef] [Google Scholar]
  7. Gela G, Dai JJ (1988) Calculation of thermal fields of underground cables using the boundary element method. IEEE Trans Power Deliv Vol 3, No 4, Oct 3:1341–1347. [CrossRef] [Google Scholar]
  8. Bernath A, Olfe DB, Ferguson BW (1984) Heat transfer measurements on uniqually loaded underground power cables with constant and cyclic currents. IEEE Trans Power Appar Syst PAS- 103:2799–2806. [CrossRef] [Google Scholar]
  9. Al-Saud M S., El-Kady M A., Findlay RD (2006) Accurate Assessment of Thermal Field and Ampacity of Underground Power Cables. In: Can. Conf. Electr. Comput. Eng. pp 651–654. [Google Scholar]
  10. Kellow MA (1981) A numerical procedure for the calculation of the temperature rise and ampacity of underground cables. IEEE Trans Power Appar Syst PAS- 100:3322–3330. [CrossRef] [Google Scholar]
  11. Philip JR, De Vries D A. (1957) Moisture movements in porous materials under temperature gradients. Trans Am Geophys Union 38:222–232. [Google Scholar]
  12. Gurr CG, Marshall TJ, Hutton JT (1952) Movement of water in soil due to a temperature gradient. Soil Sci 74:335–346. [CrossRef] [Google Scholar]
  13. Taylor SA, Cavazza L (1954) The movement of soil moisture in response to temperature gradients. Soil Sci Soc Am J 18:351–358. [Google Scholar]
  14. Cass A, Campbell GS, Jones TL (1984) Enhancement of thermal water vapor diffusion in soil. Soil Sci Soc Am J 48:25–32. [Google Scholar]
  15. Bonsu M (1997) Soil water management implications during the constant rate and the falling rate stages of soil evaporation. Agric Water Manag 33:87–97. [CrossRef] [Google Scholar]
  16. Hiraiwa Y, Kasubuchi T (2000) Temperature dependence of thermal conductivity of soil over a wide range of temperature (5–75 C). Eur J Soil Sci 211–218. [CrossRef] [Google Scholar]
  17. Wildenschild D, Roberts JJ (2001) Experimental tests of enhancement of vapor diffusion in Topopah Spring Tuff. J Porous Media 4:1–13. [CrossRef] [Google Scholar]
  18. Cary JW (1979) Soil Heat Transducers and Water Vapor Flow1. Soil Sci Soc Am J 43:835. [CrossRef] [Google Scholar]
  19. Jury WA, Letey J (1979) Water vapor movement in soil: reconciliation of theory and experiment. Soil Sci Soc Am J 43:823–827. [CrossRef] [Google Scholar]
  20. Haxaire A, Galavi V, Brinkgreve RBJ (2013) Definition and implementation of a fully coupled THM model for unsaturated soils. In: Kwasniewski M, Lydzba D (eds) Rock Mech. Resurces, Energy Environ. Taylor & Francis Group, Wroclaw, Poland, pp 507–512 [CrossRef] [Google Scholar]
  21. Milly PCD (1984) A Simulation Analysis of Thermal Effects on Evaporation From Soil. Water Resour Res 20:1087. [Google Scholar]
  22. Kimball B A., Jackson RD, Reginato RJ, et al. (1976) Comparison of Field-measured and Calculated Soil-heat Fluxes1. Soil Sci Soc Am J 40:18. [Google Scholar]
  23. Lu S, Ren T, Yu Z, Horton R (2011) A method to estimate the water vapour enhancement factor in soil. Eur J Soil Sci 62:498–504. [CrossRef] [Google Scholar]
  24. Sakai M, Toride N, Šimůnek J (2009) Water and Vapor Movement with Condensation and Evaporation in a Sandy Column. Soil Sci Soc Am J 73:707. [Google Scholar]
  25. Heitman JL, Horton R, Ren T, et al. (2008) A Test of Coupled Soil Heat and Water Transfer Prediction under Transient Boundary Temperatures. Soil Sci Soc Am J 72:1197. doi: 10.2136/sssaj2007.0234 [CrossRef] [Google Scholar]
  26. Garzoli KV, Blackwell J (1987) An analysis of the nocturnal heat loss from a double skin plastic greenhouse. J Agric Eng Res 36:75–86. [CrossRef] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.