Open Access
Issue
E3S Web Conf.
Volume 13, 2017
4th Scientific and Technical Conference on Modern Technologies and Energy Systems, WTiUE 2016
Article Number 02004
Number of page(s) 6
Section Nanofluids, fluid mechanics and heat transfer
DOI https://doi.org/10.1051/e3sconf/20171302004
Published online 10 February 2017
  1. C.C Hwang, Y.H. Jiang, Extensions to the finite element method for thermal analysis of underground cable systems. Electr Pow Syst Res 64:159–64 (2003) [CrossRef] [Google Scholar]
  2. M.S. Al-Saud, M.A. El-Kady, R.D. Findlay, A new approach to underground cable performance assessment. Electr Pow Syst Res 78:907–18 (2008) [CrossRef] [Google Scholar]
  3. V.R. De Lieto, L. Fontana, A. Vallati, Thermal analysis of underground electrical power cables buried in non-homogeneous soils. Appl Therm Eng 31:772–8 (2011) [CrossRef] [Google Scholar]
  4. V.R. De Lieto, L. Fontana, A. Vallati, Experimental study of the thermal field deriving from an underground electrical power cable buried in nonhomogeneous soils. Appl Therm Eng; 62:390–7 (2014) [CrossRef] [Google Scholar]
  5. E. Kroener, A. Vallati, M. Bittelli, Numerical simulation of coupled heat, liquid water and water vapor in soils for heat dissipation of underground electrical power cables. App Therm Eng; 70:510–23 (2014) [CrossRef] [Google Scholar]
  6. P. Ocłoń, M. Bittelli, P. Cisek, E. Kroener, M. Pilarczyk, D. Taler, R.V. Rao, A. Vallati, The performance analysis of a new thermal backfill material for underground power cable system Applied Thermal Engineering, 108, pp. 233–250 (2016) [CrossRef] [Google Scholar]
  7. P. Ocłoń, P. Cisek, D. Taler, M. Pilarczyk, T. Szwarc, Optimizing of the underground power cable bedding using momentum-type particle swarm optimization method Energy, 92, pp. 230–239 (2015) [Google Scholar]
  8. P. Ocłoń, P. Cisek, M. Pilarczyk, D. Taler, Numerical simulation of heat dissipation processes in underground power cable system situated in thermal backfill and buried in a multilayered soil Energy Conversion and Management, 95, pp. 352–370 (2015) [CrossRef] [Google Scholar]
  9. P. Ocłoń, D. Taler, P. Cisek, M. Pilarczyk, Fem- Based Thermal Analysis of Underground Power Cables Located in Backfills Made of Different Materials Strength of Materials, 47 (5), pp. 770–780 (2015) [CrossRef] [Google Scholar]
  10. P. Cisek, P. Ocłoń, M. Pilarczyk. Thermal analysis of operating conditions for The 400 kV underground power cable transmission line as a power plant delivery system. Rynek Energii, 114:70–7 [in polish]. (2014) [Google Scholar]
  11. IEC 60287-2-1: Electric Cables-Calculation of the current rating – Part 2: Thermal resistance – Section 1: calculation of the thermal resistance (1995) [Google Scholar]
  12. IEEE 835-1994: IEEE Standard Power Cable Ampacity Tables (1994) [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.