Open Access
Issue
E3S Web Conf.
Volume 14, 2017
Energy and Fuels 2016
Article Number 02040
Number of page(s) 9
Section Fuels
DOI https://doi.org/10.1051/e3sconf/20171402040
Published online 15 March 2017
  1. European Commission, Renewable energy progress report (Brussels, 2015) [Google Scholar]
  2. Final meeting of the technical working group (TWG), for the review of the BAT reference document for large combustion plants (LCP BREF), final meeting, background paper (BP) (Seville, 2015) [Google Scholar]
  3. P. Viklund, Superheater corrosion in biomass and waste fired boilers. Characterization, causes and prevention of chlorine-induced corrosion (Sweden, Division of Surface and Corrosion Science, Department of Chemistry, School of Chemical Science and Engineering, 2013) [Google Scholar]
  4. M. Pronobis, Modernizacja kotłów energetycznych (Wydawnictwo Naukowo-Techniczne, Warszawa 2002) [Google Scholar]
  5. T. Hardy, W Kordylewski, K. Mościcki, Arch. Spal., 9, 181–195 (2009) [Google Scholar]
  6. M. Spiegel, Beeinflussung der Korrosionsgeschwindigkeit von den Verhaltnissen im rohrwandnahen Bereich bei der HT-Chlor-Korrosion. Vortag VDIWissensforum „Belage und Korrosion”, 14.06.2005 in Dampferzeugerkorrosion, M. Born (Freiberg, SAXONIA Standortentwicklungs-und-Verwaltungsgesellschaft mbH, 2005) [Google Scholar]
  7. J. R. Nicholls, R. Newton, N. J. Simms, J. F Norton, Mater. High Temp., 20 (2), 93–108 (2003) [Google Scholar]
  8. A. Zahs, M. Spiegel, H. J. Grabke, Mater. Sci. Eng., 50, 561–578 (1999) [Google Scholar]
  9. H. J. Grabke, E. Reese, M. Spiegel, Corro. Sci., 37, 7, 1023–1043 (1995) [CrossRef] [Google Scholar]
  10. M.A. Uusitalo, P.M.J. Vouoristo, T.A. Mäntylä, Corro. Sci., 46, 1311–1331 (2004) [CrossRef] [Google Scholar]
  11. K. Salmenoja, M. Hupa, R. Backman, Laboratory Studies on the Influence of Gaseous HCl on Fireside Corrosion of Superheaters in Impact of Mineral Impurities in Solid Fuel Combustion, edited by R. P. Gupta, T. F. Wall, L. Baxter (Springer US, New York, 1999) [Google Scholar]
  12. D. Bramhoff u.a.: Einfluss von HCl und Cl2 auf die Hochtemperaturkorrosion des 2,25Cr1Mo-Stahls in Atmospharen mit hohen Sauerstoffdrucken. Werkstoffe und Korrosion in Dampferzeugerkorrosion, M. Born (Freiberg, SAXONIA Standortentwicklungs-und-Verwaltungsgesellschaft mbH, 2005) [Google Scholar]
  13. M. Spiegel,, Mater. Corro., 50, 373–393 (1999) [CrossRef] [Google Scholar]
  14. M.A. Uusitalo, P.M.J. Vuoristo, T.A. Mantyla, Mater. Sci. Eng., 346, 168–177 (2003) [CrossRef] [Google Scholar]
  15. M. Sanchez Pasten, M. Spiegel, Mater. Corro., 57, 2, 192–192 (2006) [CrossRef] [Google Scholar]
  16. K. Zhang, Y. Niu, C. Zeng, W. Wu, J. Mater. Sci. Technol., 20, 2, 213–216 (2004) [CrossRef] [Google Scholar]
  17. B. J. Skrifvars, M. Westén-Karlsson, M. Hupa, K. Salmenoja, Corro. Sci., 52, 1011–1019 (2010) [CrossRef] [Google Scholar]
  18. B. J. Skrifvars, R. Backman, M. Hupa, K. Salmenoja, E. Vakkilainen, Corro. Sci., 50, 1274–1282 (2008) [CrossRef] [Google Scholar]
  19. Y. S. Li, Y. Niu, W.T. Wu, Mater. Sci. Eng., A345, 64, 64–71 (2003) [Google Scholar]
  20. J. Waltl, N. Rechberger, VGB PowerTech, 3, 48–52 (2006) [Google Scholar]
  21. M. Aho, E. Ferrer, Fuel, 84, 201–212 (2005) [CrossRef] [Google Scholar]
  22. R.W. Bryers, Factors critically affecting fireside deposits in steam generators in Impact of Mineral Impurities in Solid Fuel Combustion, edited by R. P. Gupta, T. F. Wall, L. Baxter (Springer US, New York, 1999) [Google Scholar]
  23. S.C. Srivastava, K.M. Godiwalla, M.K. Banerjee, J. Mater Sci, 32, 835–849 (1997) [CrossRef] [Google Scholar]
  24. T. Blomberg, Mater. Corro., 57, 170–175 (2006) [CrossRef] [Google Scholar]
  25. M. Born, VGB PowerTech, 5, 107–111 (2005) [Google Scholar]
  26. W. Ptak, M. Sukiennik, Bulletin de l’Academie Polonaise des Sciences. Serie des sciences techniques, 17, 21–25 (1969) [Google Scholar]
  27. W. Ptak, M. Sukienni, R. Olesinski, R. Kaczmarczyk, Arch. Metall., 32, 355–362 (1987) [Google Scholar]
  28. R. Kaczmarczyk, S. Gurgul, Arch. Metall. Mater., 59, 4, 1379–1383 (2014) [CrossRef] [Google Scholar]
  29. R. Kaczmarczyk, S. Gurgul S, Arch. Metall. Mater., 59, 1, 145–148 (2014) [CrossRef] [Google Scholar]
  30. O. Knacke, O. Kubaschewski, K. Hesselmann, Thermochemical Properties of Inorganic Substances (Berlin, Springer, 1991) [Google Scholar]
  31. Outokumpu HSC Chemistry, Chemical Reaction and Equilibrium Software, (Outokumpu Research Oy, Finland, 2002) ISBN 952-9507-08-9. [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.