Open Access
E3S Web Conf.
Volume 14, 2017
Energy and Fuels 2016
Article Number 02039
Number of page(s) 10
Section Fuels
Published online 15 March 2017
  1. A.J. Hunt, E.H.K. Sin, R. Marriott, J.H. Clark, Generation, Capture, and Utilization of Industrial Carbon Dioxide, Chemsuschem, 3 (2010) 306–322. [Google Scholar]
  2. J.-M. Lavoie, Review on dry reforming of methane, a potentially more environmentally-friendly approach to the increasing natural gas exploitation, Frontiers in Chemistry, 2 (2014). [Google Scholar]
  3. J.T. Richardson, S.A. Paripatyadar, Carbon dioxide reforming of methane with supported rhodium, Applied Catalysis, 61 (1990) 293–309. [CrossRef] [Google Scholar]
  4. N. Thybaud, Lebain D.,, Panorama des vois de valorisation du CO2, French Agence de l’Environnement et de la Maitrise de l’Energie, Angers, France, 2010. [Google Scholar]
  5. M.S. Fan, A.Z. Abdullah, S. Bhatia, Catalytic Technology for Carbon Dioxide Reforming of Methane to Synthesis Gas, Chemcatchem, 1 (2009) 192–208. [CrossRef] [Google Scholar]
  6. M. Usman, W.M.A. Wan Daud, H.F. Abbas, Dry reforming of methane: Influence of process parameters—A review, Renewable and Sustainable Energy Reviews, 45 (2015) 710–744. [Google Scholar]
  7. A. Becerra, M. Dimitrijewits, C. Arciprete, A. Castro Luna, Stable Ni/Al2O3 catalysts for methane dry reforming, Granular Matter, 3 (2001) 79–81. [CrossRef] [Google Scholar]
  8. R. Zanganeh, M. Rezaei, A. Zamaniyan, Dry reforming of methane to synthesis gas on NiO–MgO nanocrystalline solid solution catalysts, Int J Hydrogen Energ, 38 (2013) 3012–3018. [CrossRef] [Google Scholar]
  9. C.E. Daza, J. Gallego, J.A. Moreno, F. Mondragón, S. Moreno, R. Molina, CO2 reforming of methane over Ni/Mg/Al/Ce mixed oxides, Catal Today, 133–135 (2008) 357–366. [CrossRef] [Google Scholar]
  10. A.R. Gonzalez, Y.J.O. Asencios, E.M. Assaf, J.M. Assaf, Dry reforming of methane on Ni-Mg-Al nano-spheroid oxide catalysts prepared by the sol-gel method from hydrotalcite-like precursors, Appl Surf Sci, 280 (2013) 876–887. [CrossRef] [Google Scholar]
  11. O.W. Perez-Lopez, A. Senger, N.R. Marcilio, M.A. Lansarin, Effect of composition and thermal pretreatment on properties of Ni–Mg–Al catalysts for CO2 reforming of methane, Applied Catalysis A: General, 303 (2006) 234–244. [CrossRef] [Google Scholar]
  12. R. Dębek, K. Zubek, M. Motak, P. Da Costa, T. Grzybek, Effect of nickel incorporation into hydrotalcite-based catalyst systems for dry reforming of methane, Res Chem Intermediat, 41 (2015) 9485–9495. [Google Scholar]
  13. R. Dębek, K. Zubek, M. Motak, M.E. Galvez, P. Da Costa, T. Grzybek, Ni–Al hydrotalcite-like material as the catalyst precursors for the dry reforming of methane at low temperature, Comptes Rendus Chimie, 18 (2015) 1205–1210. [CrossRef] [Google Scholar]
  14. R. Dębek, M. Motak, D. Duraczyska, F. Launay, M.E. Galvez, T. Grzybek, P. Da Costa, Methane dry reforming over hydrotalcite-derived Ni-Mg-Al mixed oxides: the influence of Ni content on catalytic activity, selectivity and stability, Catalysis Science & Technology, 6 (2016) 6705–6715. [Google Scholar]
  15. C.E. Daza, S. Moreno, R. Molina, Co-precipitated Ni–Mg–Al catalysts containing Ce for CO2 reforming of methane, Int J Hydrogen Energ, 36 (2011) 3886–3894. [CrossRef] [Google Scholar]
  16. C.E. Daza, C.R. Cabrera, S. Moreno, R. Molina, Syngas production from CO2 reforming of methane using Ce-doped Ni-catalysts obtained from hydrotalcites by reconstruction method, Applied Catalysis A: General, 378 (2010) 125–133. [CrossRef] [Google Scholar]
  17. R. Dębek, M. Radlik, M. Motak, M.E. Galvez, W. Turek, P. Da Costa, T. Grzybek, Nicontaining Ce-promoted hydrotalcite derived materials as catalysts for methane reforming with carbon dioxide at low temperature - On the effect of basicity, Catal Today, 257 (2015) 59–65. [CrossRef] [Google Scholar]
  18. A.I. Tsyganok, K. Suzuki, S. Hamakawa, K. Takehira, T. Hayakawa, Mg–Al Layered Double Hydroxide Intercalated with [Ni(edta)]2− Chelate as a Precursor for an Efficient Catalyst of Methane Reforming with Carbon Dioxide, Catal Lett, 77 (2001) 75–86. [CrossRef] [Google Scholar]
  19. A.I. Tsyganok, T. Tsunoda, S. Hamakawa, K. Suzuki, K. Takehira, T. Hayakawa, Dry reforming of methane over catalysts derived from nickel-containing Mg-Al layered double hydroxides, J Catal, 213 (2003) 191–203. [CrossRef] [Google Scholar]
  20. F. Cavani, F. Trifirò, A. Vaccari, Hydrotalcite-type anionic clays: Preparation, properties and applications, Catal Today, 11 (1991) 173–301. [Google Scholar]
  21. V. Rives, Characterisation of layered double hydroxides and their decomposition products, Materials Chemistry and Physics, 75 (2002) 19–25. [CrossRef] [Google Scholar]
  22. D. Tichit, B. Coq, Catalysis by Hydrotalcites and Related Materials, CATTECH, 7 (2003) 206–217. [CrossRef] [Google Scholar]
  23. S. Kannan, A. Dubey, H. Knozinger, Synthesis and characterization of CuMgAl ternary hydrotalcites as catalysts for the hydroxylation of phenol, J Catal, 231 (2005) 381–392. [CrossRef] [Google Scholar]
  24. P. Tan, Z. Gao, C. Shen, Y. Du, X. Li, W. Huang, Ni-Mg-Al solid basic layered double oxide catalysts prepared using surfactant-assisted coprecipitation method for CO2 reforming of CH4, Chinese Journal of Catalysis, 35 (2014) 1955–1971. [CrossRef] [Google Scholar]
  25. E. Lopez-Salinas, Y. Ono, Intercalation chemistry of a Mg □ Al layered double hydroxide ion-exchanged with complex MCl2−4 (M □ Ni, Co) ions from organic media, Microporous Materials, 1 (1993) 33–42. [CrossRef] [Google Scholar]
  26. C. Li, Y.-W. Chen, Temperature-programmed-reduction studies of nickel oxide/alumina catalysts: effects of the preparation method, Thermochimica Acta, 256 (1995) 457–465. [CrossRef] [Google Scholar]
  27. B. Mile, D. Stirling, M.A. Zammitt, A. Lovell, M. Webb, The location of nickel oxide and nickel in silica-supported catalysts: Two forms of “NiO” and the assignment of temperature-programmed reduction profiles, J Catal, 114 (1988) 217–229. [CrossRef] [Google Scholar]
  28. A. Kadkhodayan, A. Brenner, Temperature-programmed reduction and oxidation of metals supported on γ-alumina, J Catal, 117 (1989) 311–321. [CrossRef] [Google Scholar]
  29. K.Y. Koo, S.-h. Lee, U.H. Jung, H.-S. Roh, W.L. Yoon, Syngas production via combined steam and carbon dioxide reforming of methane over Ni–Ce/MgAl2O4 catalysts with enhanced coke resistance, Fuel Processing Technology, 119 (2014) 151–157. [CrossRef] [Google Scholar]
  30. G. Leofanti, M. Padovan, G. Tozzola, B. Venturelli, Surface area and pore texture of catalysts, Catal Today, 41 (1998) 207–219. [Google Scholar]
  31. Y.H. Hu, E. Ruckenstein, Catalytic Conversion of Methane to Synthesis Gas by Partial Oxidation and CO2 Reforming, Advances in Catalysis, Academic Press 2004, pp. 297–345. [Google Scholar]
  32. Y.-g. Chen, J. Ren, Conversion of methane and carbon dioxide into synthesis gas over alumina-supported nickel catalysts. Effect of Ni-Al2O3 interactions, Catal Lett, 29 (1994) 39–48. [CrossRef] [Google Scholar]
  33. H.-P. Ren, Y.-H. Song, W. Wang, J.-G. Chen, J. Cheng, J. Jiang, Z.-T. Liu, Z.-W. Liu, Z. Hao, J. Lu, Insights into CeO2-modified Ni–Mg–Al oxides for pressurized carbon dioxide reforming of methane, Chemical Engineering Journal, 259 (2015) 581–593. [CrossRef] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.