Open Access
Issue
E3S Web Conf.
Volume 16, 2017
11th European Space Power Conference
Article Number 03004
Number of page(s) 7
Section Power Generation: Solar Cells
DOI https://doi.org/10.1051/e3sconf/20171603004
Published online 23 May 2017
  1. Ross, R.T., and Nozik, A.J. (1982). Efficiency of hot-carrier solar energy converters. Journal of Applied Physics 53, 3813–3818. [Google Scholar]
  2. Würfel, P., Brown, A.S., Humphrey, T.E., and Green, M.A. (2005). Particle conservation in the hot-carrier solar cell. Progress in Photovoltaics: Research and Applications 13, 277–285. [Google Scholar]
  3. Wurfel, P. (1997). Solar energy conversion with hot electrons from impact ionisation. Solar Energy Materials and Solar Cells 46, 43–52. [CrossRef] [Google Scholar]
  4. Nozik, A.J. (2002). Quantum dot solar cells Physica E 14, 115–120. [Google Scholar]
  5. Jiirgen H. Werner Rolf Brendel, and Queisser, H.J. (1994). New Upper Efficiency Limits for semiconductor solar cells. Proceedings of the First World Conference on Photovoltaic Energy Conversion. [Google Scholar]
  6. Luque, A., and Martí, A. (1997). Increasing the efficiency of ideal solar cells by photon induced transitions at intermediate levels. Physical Review Letters 78, 5014–5017. [Google Scholar]
  7. 2000 ASTM Standard Extraterrestrial Spectrum Reference E-490–00. [Google Scholar]
  8. Shockley, W., and Queisser, H.J. (1961). Detailed Balance Limit of Efficiency of p-n Junction Solar Cells. Journal of Applied Physics 32, 510–519. [Google Scholar]
  9. Martí, A., and Araújo, G.L. (1996). Limiting efficiencies for photovoltaic energy conversion in multigap systems Solar Energy Materials and Solar cells 43, 203–222. [CrossRef] [Google Scholar]
  10. AzurSpace URL:http://www.azurspace.com/index.php/en/products/products-space/space-solar-cells. Accessed: 2016-06-02. (Archived by WebCite® at http://www.webcitation.org/6hxzSFIDP). [Google Scholar]
  11. Martí, A., Antolin, E., Stanley, C.R., Farmer, C.D., Lopez, N., Diaz, P., Canovas, E., Linares, P.G., and Luque, A. (2006). Production of Photocurrent due to Intermediate-to-Conduction-Band Transitions: A Demonstration of a Key Operating Principle of the Intermediate-Band Solar Cell. Physical Review Letters 97, 247701–247704. [CrossRef] [PubMed] [Google Scholar]
  12. López, E., Datas, A., Ramiro, I., Linares, P.G., Antolín, E., Artacho, I., Martí, A., Luque, A., Shoji, Y., Sogabe, T., et al. (2016). Demonstration of the operation principles of intermediate band solar cells at room temperature. Solar Energy Materials and Solar Cells 149, 15–18. [CrossRef] [Google Scholar]
  13. Datas, A., López, E., Ramiro, I., Antolín, E., Martí, A., Luque, A., Tamaki, R., Shoji, Y., Sogabe, T., and Okada, Y. (2015). Intermediate Band Solar Cell with Extreme Broadband Spectrum Quantum Efficiency. Physical Review Letters 114, 157701. [CrossRef] [PubMed] [Google Scholar]
  14. Tamaki, R., Shoji, Y., Okada, Y., and Miyano, K. (2014). Spectrally resolved intraband transitions on two-step photon absorption in InGaAs/GaAs quantum dot solar cell. Applied Physics Letters 105, -. [Google Scholar]
  15. Iñigo Ramiro, Elisa Antolín, Jinyoung Hwang, Alan Teran, Andy Martin, Joanna Millunchick, Jamie Phillips, A. Martí, and A. Luque (2016). Three-Bandgap Absolute Quantum Efficiency in Intermediate Band Solar Cells. To appear published at the 43 IEEE PVSC. [Google Scholar]
  16. Linares, P.G., Martí, A., Antolín, E., Farmer, C.D., Ramiro, I., Stanley, C.R., and Luque, A. (2012). Voltage recovery in intermediate band solar cells. Solar Energy Materials and Solar cells 98, 240–244. [CrossRef] [Google Scholar]
  17. Ramiro, I., Antolin, E., Linares, P.G., Lopez, E., Artacho, I., Datas, A., Marti, A., Luque, A., Steer, M.J., and Stanley, C.R. (2014). Two-photon photocurrent and voltage up-conversion in a quantum dot intermediate band solar cell. In Photovoltaic Specialist Conference (PVSC), 2014 IEEE 40th. pp. 3251–3253. [CrossRef] [Google Scholar]
  18. Semonin, O.E., Luther, J.M., Choi, S., Chen, H.-Y., Gao, J., Nozik, A.J., and Beard, M.C. (2011). Peak External Photocurrent Quantum Efficiency Exceeding 100% via MEG in a Quantum Dot Solar Cell. Science 334, 1530–1533. [CrossRef] [PubMed] [Google Scholar]
  19. Conibeer, G., Shrestha, S., Huang, S.J., Patterson, R., Xia, H.Z., Feng, Y., Zhang, P.F., Gupta, N., Tayebjee, M., Smyth, S., et al. (2015). Hot carrier solar cell absorber prerequisites and candidate material systems. Solar Energy Materials and Solar Cells 135, 124–129. [CrossRef] [Google Scholar]
  20. Yao, Y., and König, D. (2015). Comparison of bulk material candidates for hot carrier absorber. Solar Energy Materials and Solar Cells 140, 422–427. [CrossRef] [Google Scholar]
  21. Dimmock, J.A.R., Day, S., Kauer, M., Smith, K., and Heffernan, J. (2014). Demonstration of a hot-carrier photovoltaic cell. Prog. Photovoltaics 22, 151–160. [CrossRef] [Google Scholar]
  22. Dimmock, J.A.R., Kauer, M., Stavrinou, P.N., and Ekins-Daukes, N.J. (2015). A metallic hot carrier photovoltaic cell. In Physics Simulation and Photonic Engineering of Photovoltaic Devices Iv, Volume 9358, A. Freundlich, J.F. Guillemoles and M. Sugiyama, eds. [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.