Open Access
E3S Web Conf.
Volume 16, 2017
11th European Space Power Conference
Article Number 03007
Number of page(s) 8
Section Power Generation: Solar Cells
Published online 23 May 2017
  1. M.A. Green, K. Emery, Y. Hishikawa, W. Warta, E.D. Dunlop, “Solar cell efficiency tables (version 47)”, Prog. Photovolt: Res. Appl. 24, 3 (2016). [CrossRef] [Google Scholar]
  2. G.J. Bauhuis, P. Mulder, J.J. Schermer: “Thin-film III-V solar cells using epitaxial lift-off” Chapter 21 in: “High-efficiency solar cells: physics, materials and devices” X. Wang, Z.M. Wang (eds.), Springer Int. Pub. (2013). [Google Scholar]
  3. G.J. Bauhuis, P. Mulder, E.J. Haverkamp, J.J. Schermer, E. Bongers, G. Oomen, W. Köstler, G. Strobl, “Wafer reuse for repeated growth of III-V solar cells”, Prog. Photovolt: Res. Appl. 18, 155 (2010). [CrossRef] [Google Scholar]
  4. G.J. Bauhuis, P. Mulder, E.J. Haverkamp, J.C.C.M. Huijben, J.J. Schermer, “26.1% thin-film GaAs solar cells using epitaxial lift-off “, Sol. Energy Mat. Sol. Cells, 93, 1488 (2009). [CrossRef] [Google Scholar]
  5. O.D. Miller, E. Yablonovitch, S.R. Kurtz, “Strong internal and external luminescence as solar cells approach the Shockley-Queisser limit”, IEEE J. Photovolt. 2, 303 (2012). [CrossRef] [Google Scholar]
  6. T. Sugaya, O. Numakami, R. Oshima, S. Furue, H. Komaki, T. Amano, K. Matsubara, Y. Okano, and S. Niki, “Ultra-high stacks of InGaAs/GaAs quantum dots for high efficiency solar cells”, Energy Environ. Sci., 5 (3), pp. 6233–6237 (2012). [CrossRef] [Google Scholar]
  7. F. K. Tutu, J. Wu, P. Lam, M. Tang, N. Miyashita, Y. Okada, J. Wilson, R. Allison, and H. Liu, “Antimony mediated growth of high-density InAs quantum dots for photovoltaic cells”, Appl. Phys. Lett., 103 (4), p. 043901, (2013). [CrossRef] [Google Scholar]
  8. J. Tommila et al., Sol. Energy Mat. Sol. Cells, 94 (10), pp. 1845–1848 (2010). [CrossRef] [Google Scholar]
  9. T. Aho, A. Aho, A. Tukiainen, V. Polojärvi, M. Raappana, and M. Guina, “Optically enhanced GaInNAs solar cell”, EUPVSEC 2016 (2016). [Google Scholar]
  10. M.P. Lumb, M.A. Steiner, J.F. Geisz, and R.J. Walters, “Incorporating photon recycling into the analytical drift-diffusion model of high efficiency solar cells,” J. Appl. Phys., 116(19), p.194504 (2014). [CrossRef] [Google Scholar]
  11. M. Gioannini et al., IEEE J. Photovoltaics, vol. 3, no. 4, pp. 1271–1278 (2013). [CrossRef] [Google Scholar]
  12. F. Cappelluti, M. Gioannini, A. Khalili. “Impact of doping on InAs/GaAs quantum-dot solar cells: A numerical study on photovoltaic and photoluminescence behavior,“ Sol. Energy Mat. Sol. Cells, 157, 209–220 (2016). [Google Scholar]
  13. M. A. Steiner, J. F. Geisz, I. Garcia, D. J. Friedman, A. Duda, 22 and S. R. Kurtz, J. Appl. Phys. 113, 123109 (2013). [CrossRef] [Google Scholar]
  14. E. Yablonovitch and G. D. Cody, “Intensity enhancement in textured optical sheets for solar cells”, IEEE Trans. Electron Dev. 29(2), 300 (1982). [CrossRef] [Google Scholar]
  15. Mokkapati, S. and Catchpole, K. R., “Nanophotonic light trapping in solar cells”, J. Appl. Phys., 112, 101101 (2012). [Google Scholar]
  16. F. Cappelluti, et al., “Numerical Study of Thin-Film Quantum-Dot Solar Cells Combining Selective Doping and Light-Trapping Approaches,” 43rd IEEE PVSC, Portland, Oregon, (2016). [Google Scholar]
  17. P. Lam et al., “Voltage recovery in charged InAs/GaAs quantum dot solar cells,” Nano Energy, vol. 6, pp. 159–166, (2014). [CrossRef] [Google Scholar]
  18. S. Polly, D. Forbes, K. Driscoll, S. Hellstrom, and S. Hubbard, “Delta-doping effects on quantum-dot solar cells,” IEEE J. Photovoltaics, vol. 4, no. 4, pp. 1079–10857 (2014). [CrossRef] [Google Scholar]
  19. Wang X, Khan MR, Gray JL, Alam MA, Lundstrom MS. “Design of GaAs solar cells operating close to the Shockley–Queisser Limit,” IEEE J. Photovoltaics, Apr;3(2):737–44 (2013). [CrossRef] [Google Scholar]
  20. Walker, A. W., et al. “Impact of Photon Recycling on GaAs Solar Cell Designs,” IEEE J. Photovoltaics, 5.6 636–1645 (2015). [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.