Open Access
E3S Web Conf.
Volume 16, 2017
11th European Space Power Conference
Article Number 03009
Number of page(s) 6
Section Power Generation: Solar Cells
Published online 23 May 2017
  1. Guter, W., Dunzer, F., Ebel, L., Hillerich, K., Köstler, W., Kubera, T., . . . & Wächter, C. (2016). Space Solar Cells – 3G30 And Next Generation Radiation Hard Products. in Proc. European Space Power Conference, Thessaloniki, Greece - to be published. [Google Scholar]
  2. Chiu, P.T., Law, D.C., Woo, R.L., Singer, S.B., Bhusari, D., Hong, W.D., . . . & Karam, N.H. (2014) 35.8% space and 38.8% terrestrial 5J direct bonded cells. 2014 IEEE 40th Photovoltaic Specialists Conference (PVSC). 0011–3. [Google Scholar]
  3. Patel, P., Aiken, D., Boca, A., Cho, A.Y., Chumney, D., Clevenger, M.B., . . . & Varghese, T. (2012) Experimental results from performance improvement and radiation hardening of inverted metamorphic multijunction solar cells IEEE Journal of Photovoltaics. 2(3), 377–81. [Google Scholar]
  4. AZUR SPACE Solar Power GmbH, [Google Scholar]
  5. Spectrolab, [Google Scholar]
  6. SolAero, [Google Scholar]
  7. Volz, K., Lackner, D., Nemeth, I., Kunert, B., Stolz, W., Baur, C., . . . & Bett, A.W. (2008) Optimization of annealing conditions of (GaIn)(NAs) for solar cell applications. Journal of Crystal Growth. 310(7-9), 2222–8. [CrossRef] [Google Scholar]
  8. Geisz, J.F. & Friedman, D.J. (2002) III-N-V semiconductors for solar photovoltaic applications. Semiconductor Science and Technology. 17(8), 769–77. [CrossRef] [Google Scholar]
  9. Garrod, T.J., Kirch, J., Dudley, P., Kim, S., Mawst, L.J. & Kuech, T.F. (2011) Narrow band gap GaInNAsSb material grown by metal organic vapor phase epitaxy (MOVPE) for solar cell applications Journal of Crystal Growth. 315(1), 68–73. [Google Scholar]
  10. Baur, C., Bett, A.W., Dimroth, F., van Riesen, S., Kunert, B., Traversa, M., . . . & Stolz, W. (2003). Development of a 1.0 eV (GaIn)(NAs) Solar Cell. in Proc. Technical Digest of the 3rd World Conference on Photovoltaic Energy Conversion, Osaka, Japan. pp.677–680 [Google Scholar]
  11. Essig, S., Stämmler, E., Rönsch, S., Oliva, E., Schachtner, M., Siefer, G., . . . & Dimroth, F. (2011). Dilute nitrides for 4- and 6- junction space solar cells. in Proc. 9th European Space Power Conference, St.-Raphael, France. [Google Scholar]
  12. France, R.M., Geisz, J.F., Garcia, I., Steiner, M.A., McMahon, W.E., Friedman, D.J., . . . & Olavarria, W.J. (2015) Design Flexibility of Ultrahigh Efficiency Four-Junction Inverted Metamorphic Solar Cells. IEEE Journal of Photovoltaics. PP(99), 1–6. [Google Scholar]
  13. Guter, W., Schöne, J., Philipps, S.P., Steiner, M., Siefer, G., Wekkeli, A., . . . & Dimroth, F. (2009) Current-matched triple-junction solar cell reaching 41.1% conversion efficiency under concentrated sunlight. Applied Physics Letters 94(22), 223504–6. [Google Scholar]
  14. Dimroth, F., Tibbits, T.N.D., Beutel, P., Karcher, C., Oliva, E., Siefer, G., . . . & Hannappel, T. (2014) Development of high efficiency wafer bonded 4-junction solar cells for concentrator photovoltaic applications. 40th IEEE Photovoltaic Specialists Conference. 0006–10 [Google Scholar]
  15. Tibbits, T.N.D., Beutel, P., Grave, M., Karcher, C., Oliva, E., Siefer, G., . . . & Dobrich, A. (2014). New Efficiency Frontiers With Wafer-Bonded Multi-Junction Solar Cells. in Proc. 29th European Photovoltaic Solar Energy Conference, Amsterdam, Netherlands. pp 1975–8 [Google Scholar]
  16. Green, M.A., Emery, K., Hishikawa, Y., Warta, W. & Dunlop, E.D. (2016) Solar cell efficiency tables (version 47). Progress in Photovoltaics: Research and Applications. 24(1), 3–11. [Google Scholar]
  17. Létay, G., Breselge, M. & Bett, A.W. (2003). Calculating the Generation Function of III-V Solar Cells. in Proc. Proceedings of the 3rd World Conference on Photovoltaic Energy Conversion, Osaka, Japan. pp 741–4 [Google Scholar]
  18. Dimroth, F., Tibbits, T.N.D., Niemeyer, M., Predan, F., Beutel, P., Karcher, C., . . . & Signamarcheix, T. (2015). Four-junction wafer bonded concentrator solar cells. in Proc. Photovoltaic Specialist Conference (PVSC), 2015 IEEE 42nd, pp 0006–10 [Google Scholar]
  19. Essig, S. & Dimroth, F. (2013) Fast atom beam activated wafer bonds between n-Si and n-GaAs with low resistance. ECS Journal of Solid State Science and Technology. 2(9), Q178–81. [CrossRef] [Google Scholar]
  20. Predan, F., Reinwald, D., Klinger, V. & Dimroth, F. (2015) Transparent and electrically conductive GaSb/Si direct wafer bonding at low temperatures by argon-beam surface activation. Applied Surface Science. 353(1203–1207). [CrossRef] [Google Scholar]
  21. Tauzin, A., Lagoutte, E., Salvetat, T., Guelfucci, J., Bogumilowicz, Y., Imbert, B., . . . & Dimroth, F. (2016) InP-based composite substrates for four junction concentrator solar cells. AIP Conference Proceedings. 1679(1), pp 040009. [CrossRef] [Google Scholar]
  22. Sabnis, V., Yuen, H. & Wiemer, M. (2012). High-efficiency multijunction solar cells employing dilute nitrides. in Proc. 8th International Conference on Concentrating Photovoltaic Systems, Toledo, Spain. [Google Scholar]
  23. Yamaguchi, M. (2001) Radiation-resistant solar cells for space use. Solar Energy Materials and Solar Cells. 68(1), 31–53. [CrossRef] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.