Open Access
Issue
E3S Web Conf.
Volume 16, 2017
11th European Space Power Conference
Article Number 09005
Number of page(s) 5
Section Energy Storage: Electrochemical Components
DOI https://doi.org/10.1051/e3sconf/20171609005
Published online 23 May 2017
  1. Van de Krol R. & Grtzel M. (2012). Photoelectrochemical Hydrogen Production, Springer, New York. [CrossRef] [Google Scholar]
  2. Bosserez T., Rongé J., van Humbeeck J., Haussener S. & Martens J. (2015). Design of compact photoelectrochemical cells for water splitting. Oil & Gas Science and Technology – Rev. IFPEN. 70(5), 877–889. [CrossRef] [EDP Sciences] [Google Scholar]
  3. Carmo M., Fritz D.L., Mergel & J., Stolten D. (2013). A comprehensive review on PEM water electrolysis. Int. J. Hydrogen Energy. 38, 4901–4934. [CrossRef] [Google Scholar]
  4. Iwu K.O., Galeckas A., Kuznetsov A.Y. & Norby T. (2013). Solid-state photoelectro-chemical H2 generation with gaseous reactants. Electrochim. Acta. 97, 320–325. [CrossRef] [Google Scholar]
  5. Iwu K.O., Galeckas A., Diplas S., Seland F., Kuznetsov A.Y. & Norby T. (2014). Effects of temperature, triazole and hot-pressing on the performance of TiO2 photoanode in a solid-state photoelectrochemical cell. Electrochim. Acta. 115, 66–74. [CrossRef] [Google Scholar]
  6. Matsushima H., Nishida T., Konishi Y., Fukunaka Y., Ito Y. & Kuribayashi K., (2003). Water electrolysis under microgravity: Part 1. Experimental technique, Electrochim. Acta. 48, 4119–4125. [CrossRef] [Google Scholar]
  7. Ronge J., Deng S., Pulinthanathu Sree S., Bosserez T., Verbruggen S.W., Kumar Singh N., Dendooven J., Roeffaers M.B.J., Taulelle F., De Volder M., Detavernier C. & Martens J.A., (2014). Air-based phototelectrochemical cell capturing water molecules from ambient air for hydrogen production, RSC Adv. 4, 29286–29290. [CrossRef] [Google Scholar]
  8. S.A. Grigoriev, P. Millet, S. S. Volobuev, V. N. Fateev, (2009). Optimization of porous current collectors for PEM water electrolysers, Int. J. hydrogen Energy. 34, 4968–4973. [CrossRef] [Google Scholar]
  9. Grimes C.A. & Mor G.K. (2009). TiO2 Nanotube Arrays: Synthesis, Properties and Applications, Springer, Berlin [Google Scholar]
  10. Chen Y.X., Lavacchi A., Miller H.A., Bevilacqua M., Filippi J., Innocenti M., Marchionni A., Oberhauser W., Wang L. & Vizza F., (2014). Nanotechnology makes biomass electrolysis more energy efficient than water electrolysis, Nat. Commun., 5, 4036, 1–6. [Google Scholar]
  11. Brightman E., Dodwell J., van Dijk N. & Hinds G., (2015) In situ characterisation of PEM water electrolysers using a novel reference electrode, Electrochem. Commun. 52, 1–4 [CrossRef] [Google Scholar]
  12. Ji W., Qi W., Tang S., Peng H. & Li S., (2015) Hydrothermal Synthesis of Ultrasmall Pt Nanoparticles as Highly Active Electrocatalysts for Methanol Oxidation, Nanomaterials. 5(4), 2203–2211. [CrossRef] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.