Open Access
E3S Web Conf.
Volume 16, 2017
11th European Space Power Conference
Article Number 12004
Number of page(s) 6
Section Power Management & Distribution: Wide Bandgap Components
Published online 23 May 2017
  1. Bausier, F., Massetti, S. & Tonicello, F. (2014). Silicon Carbide for space power applications, 10th ESPC, Noordwijkerhout, The Netherlands. [Google Scholar]
  2. Slatter, R. & Goffin, B. (2014). Magnetoresistive current sensors for high accuracy, high bandwidth current measurement in spacecraft power electronics, 10th ESPC, Noordwijkerhout, The Netherlands. [Google Scholar]
  3. Feng, X. (2007). SiC based Solid State Power Controller, University of Kentucky Doctoral Dissertations. Paper 543. [Google Scholar]
  4. Feng, X. & Radun, A. V. (2008). SiC based Solid State Power Controller, IEEE APEC. [Google Scholar]
  5. Rozman, G. I. & Swenson, J. C. (2013). Bus-tie SSPCs for DC power distribution system, US8,344,544 B2. [Google Scholar]
  6. Guo, Y. B., Bhat, K. P., Aravamudhan, A., Hopkins D. C. & Hazelmeyer, D. R. (2011). High current and thermal transient design of a SiC SSPC for aircraft application, IEEE APEC. [Google Scholar]
  7. Bhat, K. P., Guo, Y. B., Yang, Hazelmeyer, D.R. & Hopkins D.C. (2012). Results for an AI/AIN composite 350ºC SiC Solid-State Circuit Breaker module, IEEE APEC. [Google Scholar]
  8. Urcioli, D. P., Veladis, V., Ha, H. C. & Lubormirsky, V. (2011). Demonstration of a 600- V, 60-A, bidirectional silicon carbide solid-state circuit breaker, IEEE APEC. [Google Scholar]
  9. Sato, Y., Tanaka, Y., Fukui, A., Yamasaki, M., & Ohasi, H. (2014). SiC-SIT circuit breakers with controllable interruption voltage for 400-V DC distribution systems, IEEE Trans. Power Electron. 29(5), 2597–2605. [CrossRef] [Google Scholar]
  10. Shen, Z. J., Sabui, G., Miao, Z. & Shuai, Z. (2015) Wide Bandgap Solid State Circuit Breakers for DC power systems: device and circuit considerations, IEEE Trans. Electron Devices 62(2), 294–300. [CrossRef] [Google Scholar]
  11. Miao, Z., et al (2015) A self-powered ultra-fast DC solid state circuit breaker using a normally-on SiC JFET, IEEE APEC. [Google Scholar]
  12. Mitchell, R. R., Ciccanti, A. D. & Bartlemay, J. M. (1970). High voltage solid state switches for space applications, IEEE PESC. [Google Scholar]
  13. Miao, Z., et al (2015). A self-powered bidirectional DC solid state circuit breaker using two normallyon SiC JFETs, IEEE ECCE. [Google Scholar]
  14. Miao, Z., et al. (2014). CoolSiC 1200V Power Transistor IJW120R100T1 datasheet. [Google Scholar]
  15. Bendel, J. & Li, X. (2015). Using “normally on” JFETs in power systems, Bodo’s Power Systems. [Google Scholar]
  16. Sánchez, J., Ramírez, D., Amaral, S., Cardoso, S., & Freitas, P. P. (2012). Electrical ammeter based on spin-valve sensor, Review of Scientific Instruments, 83, 105–113. [CrossRef] [Google Scholar]
  17. Ravelo, S. I., Ramírez, D., Sánchez, J., Cardoso, S., Ferreira, R. & Freitas, P. J. P. (2013). Fractional modelling of the AC large-signal frequency response in magnetoresistive current sensors, Sensors, 13(12), 17516–17533. [CrossRef] [Google Scholar]
  18. Ravelo, S. I., Ramírez, D., Sánchez, J., Cardoso, S., Ferreira, R. & Freitas, P. J. P. (2015). Total ionizing dose (TID) evaluation of magnetic tunnel junction (MTJ) current sensors, Sensors and Actuators A: Physical, 225, 119–127. [CrossRef] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.