Open Access
Issue
E3S Web Conf.
Volume 16, 2017
11th European Space Power Conference
Article Number 16001
Number of page(s) 5
Section Power Generation Posters
DOI https://doi.org/10.1051/e3sconf/20171616001
Published online 23 May 2017
  1. W. Shockley and H. J. Queisser, ‘Detailed Balance Limit of Efficiency of p‐n Junction Solar Cells’, J. Appl. Phys., vol. 32, no. 3, pp. 510–519, Mar. 1961. [CrossRef] [Google Scholar]
  2. A. Luque, A. Martí, and C. Stanley, ‘Understanding intermediate-band solar cells’, Nat. Photonics, vol. 6, no. 3, pp. 146–152, Mar. 2012. [Google Scholar]
  3. S. Sanguinetti, M. Henini, M. Grassi Alessi, M. Capizzi, P. Frigeri, and S. Franchi, ‘Carrier thermal escape and retrapping in self-assembled quantum dots’, Phys. Rev. B, vol. 60, no. 11, pp. 8276–8283, Sep. 1999. [CrossRef] [Google Scholar]
  4. E. Antolín, A. Martí, C. D. Farmer, P. G. Linares, E. Hernández, A. M. Sánchez, T. Ben, S. I. Molina, C. R. Stanley, and A. Luque, ‘Reducing carrier escape in the InAs/GaAs quantum dot intermediate band solar cell’, J. Appl. Phys., vol. 108, no. 6, p. 64513, Sep. 2010. [CrossRef] [Google Scholar]
  5. A. Luque and A. Martí, ‘The Intermediate Band Solar Cell: Progress Toward the Realization of an Attractive Concept’, Adv. Mater., vol. 22, no. 2, pp. 160–174, Nov. 2010. [CrossRef] [PubMed] [Google Scholar]
  6. C. G. Bailey, D. V. Forbes, R. P. Raffaelle, and S. M. Hubbard, ‘Near 1 V open circuit voltage InAs/GaAs quantum dot solar cells’, Appl. Phys. Lett., vol. 98, no. 16, p. 163105, Apr. 2011. [CrossRef] [Google Scholar]
  7. A. Mellor, A. Luque, I. Tobías, and A. Martí, ‘Realistic Detailed Balance Study of the Quantum Efficiency of Quantum Dot Solar Cells’, Adv. Funct. Mater., vol. 24, no. 3, pp. 339–345, Jan. 2014. [CrossRef] [Google Scholar]
  8. F. K. Tutu, P. Lam, J. Wu, N. Miyashita, Y. Okada, K.-H. Lee, N. J. Ekins-Daukes, J. Wilson, and H. Liu, ‘InAs/GaAs quantum dot solar cell with an AlAs cap layer’, Appl. Phys. Lett., vol. 102, no. 16, p. 163907, Apr. 2013. [CrossRef] [Google Scholar]
  9. P. Lam, S. Hatch, J. Wu, M. Tang, V. G. Dorogan, Y. I. Mazur, G. J. Salamo, I. Ramiro, A. Seeds, and H. Liu, ‘Voltage recovery in charged InAs/GaAs quantum dot solar cells’, Nano Energy, vol. 6, pp. 159–166, May 2014. [CrossRef] [Google Scholar]
  10. H. Y. Liu, I. R. Sellers, T. J. Badcock, D. J. Mowbray, M. S. Skolnick, K. M. Groom, M. Gutiérrez, M. Hopkinson, J. S. Ng, J. P. R. David, and R. Beanland, ‘Improved performance of 1.3μm multilayer InAs quantum-dot lasers using a high-growth-temperature GaAs spacer layer’, Appl. Phys. Lett., vol. 85, no. 5, pp. 704–706, Aug. 2004. [CrossRef] [Google Scholar]
  11. F. K. Tutu, I. R. Sellers, M. G. Peinado, C. E. Pastore, S. M. Willis, A. R. Watt, T. Wang, and H. Y. Liu, ‘Improved performance of multilayer InAs/GaAs quantum-dot solar cells using a high-growth-temperature GaAs spacer layer’, J. Appl. Phys., vol. 111, no. 4, p. 46101, Feb. 2012. [CrossRef] [Google Scholar]
  12. A. Martí, N. López, E. Antolín, E. Cánovas, A. Luque, C. R. Stanley, C. D. Farmer, and P. Díaz, ‘Emitter degradation in quantum dot intermediate band solar cells’, Appl. Phys. Lett., vol. 90, no. 23, p. 233510, Jun. 2007. [CrossRef] [Google Scholar]
  13. X. Yang, K. Wang, Y. Gu, H. Ni, X. Wang, T. Yang, and Z. Wang, ‘Improved efficiency of InAs/GaAs quantum dots solar cells by Si-doping’, Sol. Energy Mater. Sol. Cells, vol. 113, pp. 144–147, Jun. 2013. [CrossRef] [Google Scholar]
  14. T. Sugaya, Y. Kamikawa, S. Furue, T. Amano, M. Mori, and S. Niki, ‘Multi-stacked quantum dot solar cells fabricated by intermittent deposition of InGaAs’, Sol. Energy Mater. Sol. Cells, vol. 95, no. 1, pp. 163–166, Jan. 2011. [CrossRef] [Google Scholar]
  15. A. Martí, L. Cuadra, and A. Luque, ‘Partial filling of a quantum dot intermediate band for solar cells’, IEEE Trans. Electron Devices, vol. 48, no. 10, pp. 2394–2399, Oct. 2001. [CrossRef] [Google Scholar]
  16. A. Martí, N. López, E. Antolín, E. Cánovas, C. Stanley, C. Farmer, L. Cuadra, and A. Luque, ‘Novel semiconductor solar cell structures: The quantum dot intermediate band solar cell’, Thin Solid Films, vol. 511–512, pp. 638–644, Jul. 2006. [CrossRef] [Google Scholar]
  17. A. Luque and A. Martí, ‘A metallic intermediate band high efficiency solar cell’, Prog. Photovolt. Res. Appl., vol. 9, no. 2, pp. 73–86, Mar. 2001. [CrossRef] [Google Scholar]
  18. H. Y. Liu, I. R. Sellers, M. Gutiérrez, K. M. Groom, W. M. Soong, M. Hopkinson, J. P. R. David, R. Beanland, T. J. Badcock, D. J. Mowbray, and M. S. Skolnick, ‘Influences of the spacer layer growth temperature on multilayer InAs∕GaAs quantum dot structures’, J. Appl. Phys., vol. 96, no. 4, pp. 1988–1992, Aug. 2004. [CrossRef] [Google Scholar]
  19. M. V. Marquezini, M. J. S. P. Brasil, J. A. Brum, P. Poole, S. Charbonneau, and M. C. Tamargo, ‘Study of temperature-dependent exciton dynamics in a single quantum well with self-assembled islands’, Surf. Sci., vol. 361–362, pp. 810–813, Jul. 1996. [CrossRef] [Google Scholar]
  20. K. A. Sablon, J. W. Little, V. Mitin, A. Sergeev, N. Vagidov, and K. Reinhardt, ‘Strong Enhancement of Solar Cell Efficiency Due to Quantum Dots with Built-In Charge’, Nano Lett., vol. 11, no. 6, pp. 2311–2317, 2011. [CrossRef] [PubMed] [Google Scholar]
  21. T. Inoue, S. Kido, K. Sasayama, T. Kita, and O. Wada, ‘Impurity doping in self-assembled InAs/GaAs quantum dots by selection of growth steps’, J. Appl. Phys., vol. 108, no. 6, p. 63524, Sep. 2010. [CrossRef] [Google Scholar]
  22. D. T. J. Hurle, ‘A comprehensive thermodynamic analysis of native point defect and dopant solubilities in gallium arsenide’, J. Appl. Phys., vol. 85, no. 10, pp. 6957–7022, May 1999. [CrossRef] [Google Scholar]
  23. D. T. J. Hurle, ‘A thermodynamic analysis of native point defect and dopant solubilities in zinc-blende III–V semiconductors’, J. Appl. Phys., vol. 107, no. 12, p. 121301, Jun. 2010. [CrossRef] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.