Open Access
Issue
E3S Web Conf.
Volume 23, 2017
World Renewable Energy Congress-17
Article Number 01004
Number of page(s) 12
Section 1. Photovoltaics
DOI https://doi.org/10.1051/e3sconf/20172301004
Published online 20 November 2017
  1. L. Cibulka, M. Brown, L. Miller and A. V. Meier, User requirements and research needs for renewable generation forecasting tools that will meet the needs of the caiso and utilities for 2020, In A White Paper Report Prepared by CIEE, 2012. [Google Scholar]
  2. J. F. Orgill and K. G. T. Hollands, Correlation equation for hourly diffuse radiation on a horizontal surface, Sol. Energy, vol. 19, no. 4, pp. 357–359, Dec. 1977. [CrossRef] [Google Scholar]
  3. K. G. T. Hollands and R. G. Huget, A probability density function for the clearness index, with applications, Solar Energy, vol. 30, no. 3, p. 195–209, Dec. 1983. [CrossRef] [Google Scholar]
  4. J. A. Duffie and W. A. Beckman, Solar engineering of thermal processes, vol. 3, New York: Wiley, pp. ???, 2013. [CrossRef] [Google Scholar]
  5. J. Chandrasekaran and S. Kumar, Hourly diffuse fraction correlation at a tropical location, Sol. Energy, vol. 53, no. 6, pp. 505–510, Dec. 1994. [CrossRef] [Google Scholar]
  6. S. Karatasou, M. Santamouri and V. Geros, Analysis of experimental data on diffuse solar radiation in Athens, Greece, for building applications, Int. J. Sustain. Energy, vol. 23, no. (1-2), pp. 1–11, Mar. 2003. [CrossRef] [Google Scholar]
  7. J. Soares, A. P. Oliveira, M. Z. Božnar, P. Mlakar, J. F. Escobedo and A. J. Machado, Modeling hourly diffuse solar-radiation in the city of São Paulo using a neural-network technique, Appl. Energy, vol. 79, no. 2, pp. 201–214, Oct. 2004. [CrossRef] [Google Scholar]
  8. J. Boland, B. Ridley and B. Brown, Models of diffuse solar radiation, Renew. Energy, vol. 33, no. 4, pp. 575–584, Apr. 2008. [CrossRef] [Google Scholar]
  9. K. T. Hollands and H. Suehrcke, A three-state model for the probability distribution of instantaneous solar radiation, with applications. Solar Energy, vol. 96, pp. 103–112, Oct. 2013. [CrossRef] [EDP Sciences] [Google Scholar]
  10. [Online]. Available: http://reg.bom.gov.au/climate/reg/oneminsolar/index.shtml, last accessed 12th of Dec, 2016. [Google Scholar]
  11. T. Gerstner and M. Griebel, Numerical Integration Using Sparse Grids, Numerical Algorithms, vol. 18, no. 3-4, pp. 209–232, Jan. 1998. [CrossRef] [MathSciNet] [Google Scholar]
  12. L. Martín, L. F. Zarzalejo, J. Polo, A. Navarro, R. Marchante and M. Cony, Prediction of global solar irradiance based on time series analysis: application to solar thermal power plants energy production planning, Solar Energy, vol. 84, no. 10, pp. 1772–1781, 2010. [CrossRef] [Google Scholar]
  13. T. E. Hoff, R. Perez, J. Kleissl, D. Renne and J. Stein, Reporting of irradiance modeling relative prediction errors, Progress in Photovoltaics: Research and Applications, vol. 21, no. 7, pp. 1514–1519, 2013. [CrossRef] [Google Scholar]
  14. Robaa, S. M. Evaluation of sunshine duration from cloud data in Egypt, Energy 33.5 (2008): 785–795. [CrossRef] [Google Scholar]
  15. B. Ridley, J. Boland and P. Lauret, Modelling of diffuse solar fraction with multiple predictors, Renew. Energy, vol. 35, no. 2, pp. 478–483, Feb. 2010. [CrossRef] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.