Open Access
E3S Web Conf.
Volume 23, 2017
World Renewable Energy Congress-17
Article Number 03002
Number of page(s) 10
Section 3. Hydrogen Transport
Published online 20 November 2017
  1. Adewale P, Dumont M-J, Ngadi M. Recent trends of biodiesel production from animal fat wastes and associated production techniques. Renewable and Sustainable Energy Reviews 2015;45:574–88. DOI: 10.1016/j.rser.2015.02.039 [CrossRef] [Google Scholar]
  2. Dai Y-M, Wu J-S, Chen C-C, Chen K-T. Evaluating the optimum operating parameters ontransesterification reaction for biodiesel production over a LiAlO2 catalyst. Chemical Engineering Journal 2015;280:370–6. DOI: 10.1016/j.cej.2015.06.045 [CrossRef] [Google Scholar]
  3. Maneerung T, Kawi S, Wang C-H. Biomass gasification bottom ash as a source of CaO catalyst for biodiesel production via transesterification of palm oil. Energy Conversion and Management 2015;92:234–43. DOI: 10.1016/j.enconman.2014.12.057 [CrossRef] [Google Scholar]
  4. Huber GW, O’Connor P, Corma A. Processing biomass in conventional oil refineries: Production of high quality diesel by hydrotreating vegetable oils in heavy vacuum oil mixtures. Appl. Catal., A 2007;329:120–9. DOI: 10.1016/j.apcata.2007.07.002 [CrossRef] [Google Scholar]
  5. Pasel J, Wohlrab S, Kreft S, Rotov M, Löhken K, Peters R, et al. Routes for deactivation of different autothermal reforming catalysts. J. Power Sources 2016;325:51–63. DOI: 10.1016/j.jpowsour.2016.06.005 [CrossRef] [Google Scholar]
  6. Li C, Chen Y-W. Temperature-programmed-reduction studies of nickel oxide/alumina catalysts: effects of the preparation method. Thermochimica Acta 1995;256:457–65. DOI: 10.1016/0040-6031(94)02177-P [CrossRef] [Google Scholar]
  7. Ebitani K, Hattori H. Combined Temperature-Programmed Reduction (TPR)- Temperature-Programmed-Desorption (TPD) Study od Supported Platinum Catalysts. The Chemical Society of Japan 1991;64:2422–7. [CrossRef] [Google Scholar]
  8. Bianchi CL. TPR and XPS investigations of Co/Al2O3 catalysts promoted with Ru, Ir and Pt. Catalysis Letters 2001;76:3–4. [Google Scholar]
  9. Nurunnabi M, Murata K, Okabe K, Inaba M, Takahara I. Performance and characterization of Ru/Al2O3 and Ru/SiO2 catalysts modified with Mn for Fischer–Tropsch synthesis. Appl. Catal., A 2008;340:203–11. DOI: 10.1016/j.apcata.2008.02.013 [CrossRef] [Google Scholar]
  10. Bi J-L, Hong Y-Y, Lee C-C, Yeh C-T, Wang C-B. Novel zirconia-supported catalysts for low-temperature oxidative steam reforming of ethanol. Catal. Today 2007;129:322–9. DOI: 10.1016/j.cattod.2006.11.027 [CrossRef] [Google Scholar]
  11. Yao HC, Japar S, Shelef M. Surface interactions in the system RhAl2O3. J. Catal. 1977;50:407–18. DOI: 10.1016/0021-9517(77)90053-7 [CrossRef] [Google Scholar]
  12. Cheng CK, Foo SY, Adesina AA. Carbon deposition on bimetallic Co–Ni/Al2O3 catalyst during steam reforming of glycerol. Catal. Today 2011;164:268–74. DOI: 10.1016/j.cattod.2010.10.040 [CrossRef] [Google Scholar]
  13. Forzatti P, Lietti L. Catalyst deactivation. Catal. Today 1999;52:165–81. DOI: 10.1016/S0920-5861(99)00074-7 [CrossRef] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.