Open Access
Issue
E3S Web Conf.
Volume 31, 2018
The 2nd International Conference on Energy, Environmental and Information System (ICENIS 2017)
Article Number 11014
Number of page(s) 7
Section 11. Smart Information Systems
DOI https://doi.org/10.1051/e3sconf/20183111014
Published online 21 February 2018
  1. F.D. Davis, MIS Q., 13, 319–340 (1989). [CrossRef] [Google Scholar]
  2. N. Marangunic and A. Granic, Univers. Access Inf. Soc., 14, 81–95 (2015). [CrossRef] [Google Scholar]
  3. F.D. Davis, R.P. Bagozzi, and P.R. Warshaw, Manage. Sci., 35, 982–1003 (1989). [CrossRef] [Google Scholar]
  4. Q. Zhao, C.-D. Chen, and J.-L. Wang, Telemat. Informatics, 33, 959–972 (2016). [CrossRef] [Google Scholar]
  5. T.J. Willis, An Evaluation of the Technology Acceptance Model as a Means of Understanding Online Social Networking Behavior, in: Dr. Diss., University of South Florida, (2008). [Google Scholar]
  6. S. Kemp, Digital in (2016), http://wearesocial.com/sg/special-reports/digital-2016. [Google Scholar]
  7. A.J. Wicaksono, Suyoto, and Pranowo, A proposed method for predicting US presidential election by analyzing sentiment in social media, in: 2016 2nd Int. Conf. Sci. Inf. Technol., pp. 276–280, (2016), [Google Scholar]
  8. P. Karampelas, Techniques and Tools for Designing an Online Social Network Platform, in: Springer Vienna, Vienna, pp. 3–13, (2013) [CrossRef] [Google Scholar]
  9. E. Constantinides, C. Lorenzo-Romero, and M.-C. Alarcón-del-Amo, Social Networking Sites as Business Tool: A Study of User Behavior, in: Ed. by M. Glykas, Bus. Process Manag. Theory Appl., Springer Berlin Heidelberg, Berlin, Heidelberg, pp. 221–240, (2013) [CrossRef] [Google Scholar]
  10. C.-C.R. Yeh, K.C. Gossmann, and Y.-H. Tao, Acceptance of Online Social Networks as an HR Staffing Tool: Result from a Multi-country Sample, in: Ed. by L. Wang, S. Uesugi, I.-H. Ting, K. Okuhara, and K. Wang, Multidiscip. Soc. Networks Res. Second Int. Conf. MISNC 2015, Matsuyama, Japan, Sept. 1-3, 2015. Proc., Springer Berlin Heidelberg, Berlin, Heidelberg, pp. 70-79, (2015) [Google Scholar]
  11. S. Garding and A. Bruns, Moving Towards Successful Complaint Management, in: Complain. Manag. Channel Choice An Anal. Cust. Perceptions, Springer International Publishing, Cham, pp. 13–26, (2015) [CrossRef] [Google Scholar]
  12. A.S. Mattila and J. Wirtz, J. Serv. Mark., 18, 147-155 (2004). [CrossRef] [Google Scholar]
  13. Y. Namkung, S. (Shawn) Jang, and S.K. Choi, Int. J. Hosp. Manag., 30, 495–502 (2011). [CrossRef] [Google Scholar]
  14. S. Garding and A. Bruns, Organisational Complaint Management, in: Complain. Manag. Channel Choice An Anal. Cust. Perceptions, Springer International Publishing, Cham, pp. 1–12, (2015) [Google Scholar]
  15. S. Garding and A. Bruns, Analysis of Customers' Complaint Channel Choice and Complaint Behaviour, in: Complain. Manag. Channel Choice An Anal. Cust. Perceptions, Springer International Publishing, Cham, pp. 35–74, (2015) [CrossRef] [Google Scholar]
  16. S. Garding and A. Bruns, Conclusions for Organisational Complaint Management and Future Research, in: Complain. Manag. Channel Choice An Anal. Cust. Perceptions, Springer International Publishing, Cham, pp. 75–82, (2015) [CrossRef] [Google Scholar]
  17. A.M. Kaplan and M. Haenlein, Bus. Horiz., 53, 59–68 (2010). [CrossRef] [Google Scholar]
  18. I. Ajzen, Organ. Behav. Hum. Decis. Process., 50, 179–211 (1991). [CrossRef] [Google Scholar]
  19. M. Fishbein and I. Ajzen, An Introd. to Theory Res. Massachussets Addison - Wesley, (1975). [Google Scholar]
  20. E. Park and A.P. Del Pobil, Wirel. Pers. Commun., 73, 1561–1572 (2013). [CrossRef] [Google Scholar]
  21. M. Eltayeb and M. Dawson, Understanding User's Acceptance of Personal Cloud Computing: Using the Technology Acceptance Model, in: Ed. by S. Latifi, Inf. Technol. New Gener. 13th Int. Conf. Inf. Technol., Springer International Publishing, Cham, pp. 3–12, (2016) [Google Scholar]
  22. C. Yoon, C. Jeong, and E. Rolland, Inf. Technol. Manag., 16, 139–151 (2015). [CrossRef] [Google Scholar]
  23. J.C.M.R. Pinho and A.M. Soares, J. Res. Interact. Mark., 5, 116–129 (2011). [CrossRef] [Google Scholar]
  24. Y.-K. Chiu and C.-W. Huang, Using Behavior of Social Network Sites Based on Acceptance Model, in: Ed. by Y. Yang, M. Ma, and B. Liu, Inf. Comput. Appl. 4th Int. Conf. ICICA 2013, Singapore, August 16-18, 2013 Revis. Sel. Pap. Part II, Springer Berlin Heidelberg, Berlin, Heidelberg, pp. 57–66, (2013) [Google Scholar]
  25. S.J. Kwon, E. Park, and K.J. Kim, Soc. Sci. J., 51, 534–544 (2014). [CrossRef] [Google Scholar]
  26. S.-Y. Hung, J.C.-A. Tsai, and S.-T. Chou, Inf. Manag., 53, 698–716 (2016). [CrossRef] [Google Scholar]
  27. S. Seol, H. Lee, J. Yu, and H. Zo, Inf. Manag., (2016). [Google Scholar]
  28. H.C.-P. Ernst, The Influence of Perceived Belonging on Social Network Site Usage BT-Factors Driving Social Network Site Usage, in: Ed. by H.C.-P. Ernst, Springer Fachmedien Wiesbaden, Wiesbaden, pp. 29–44, (2015)/ [Google Scholar]
  29. S. Mouakket, Comput. Human Behav., 53, 102-110 (2015). [CrossRef] [Google Scholar]
  30. C.-L. Hsu, C.-C. Yu, and C.-C. Wu, Inf. Syst. E-Bus. Manag., 12, 139–163 (2014). [CrossRef] [Google Scholar]
  31. V. Balakrishnan, Univers. Access Inf. Soc., 1–13 (2016). [Google Scholar]
  32. J.F. Hair, R.E. Anderson, R.L. Tatham, and W.C. Black, “Multivariate Data Analysis with Readings”, 4th ed., Prentice-Hall, Englewood Cliffs (1995). [Google Scholar]
  33. H. Baumgartner and C. Homburg, Int. J. Res. Mark., 13, 139–161 (1996). [CrossRef] [Google Scholar]
  34. J.F. Hair, R.E. Anderson, R.L. Tatham, and W.C. Black, “Multivariate Data Analysis”, 5th ed., Prentice-Hall, Upper Saddle (1998). [Google Scholar]
  35. R.P. Bagozzi and Y. Yi, J. Acad. Mark. Sci., 16, 74–94 (1988). [CrossRef] [Google Scholar]
  36. L. Hu and P.M. Bentler, Struct. Equ. Model. A Multidiscip. J., 6, 1–55 (1999). [CrossRef] [Google Scholar]
  37. J.F. Hair, W.C. Black, B.J. Babin, and R.E. Anderson, “Multivariate Data Analysis”, 7th ed., Prentice-Hall, Upper Saddle (2009). [Google Scholar]
  38. J. Nunnally, “Psychometric theory”, 2nd ed., McGraw-Hill, New York, NY (1978). [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.