Open Access
Issue
E3S Web Conf.
Volume 32, 2018
EENVIRO 2017 Workshop - Advances in Heat and Transfer in Built Environment
Article Number 01003
Number of page(s) 8
DOI https://doi.org/10.1051/e3sconf/20183201003
Published online 21 February 2018
  1. Energy, E.P.a.C.o., The Directive on the energy performance of buildings 2002/91/EC. [Google Scholar]
  2. IEA, Renewables for heating and cooling: untapped potential. France: OECD/IEA;. 2007. [Google Scholar]
  3. Chan, H.-Y., S.B. Riffat, and J. Zhu, Review of passive solar heating and cooling technologies. Renewable and Sustainable Energy Reviews, 2010. 14(2): p. 781-789. [Google Scholar]
  4. Reichl, C., et al., Comparison of modelled heat transfer and fluid dynamics of a flat plate solar air heating collector towards experimental data. Solar Energy, 2015. 120: p. 450-463. [CrossRef] [Google Scholar]
  5. Goyal, R.K., G.N. Tiwari, and H.P. Garg, Effect of thermal storage on the performance of an air collector: A periodic analysis. Energy Conversion and Management, 1998. 39(3): p. 193-202. [CrossRef] [Google Scholar]
  6. Van Decker, G.W.E., K.G.T. Hollands, and A.P. Brunger, Heat-exchange relations for unglazed transpired solar collectors with circular holes on a square or triangular pitch. Solar Energy, 2001. 71(1): p. 33-45. [CrossRef] [Google Scholar]
  7. Gunnewiek, L.H., E. Brundrett, and K.G.T. Hollands, Flow distribution in unglazed transpired plate solar air heaters of large area. Solar Energy, 1996. 58(4-6): p. 227-237. [CrossRef] [Google Scholar]
  8. Gunnewiek, L.H., K.G.T. Hollands, and E. Brundrett, Effect of wind on flow distribution in unglazed transpired-plate collectors. Solar Energy, 2002. 72(4): p. 317-325. [CrossRef] [Google Scholar]
  9. Shukla, A., et al., A state of art review on the performance of transpired solar collector. Renewable and Sustainable Energy Reviews, 2012. 16(6): p. 3975-3985. [CrossRef] [Google Scholar]
  10. Lai, C.-M. and S. Hokoi, Solar façades: A review. Building and Environment, 2015. 91: p. 152-165. [CrossRef] [Google Scholar]
  11. Hami, K., B. Draoui, and O. Hami, The thermal performances of a solar wall. Energy, 2012. 39(1): p. 11-16. [CrossRef] [Google Scholar]
  12. Nkwetta, D.N. and F. Haghighat, Thermal energy storage with phase change material-A state-of-the art review. Sustainable Cities and Society, 2014. 10: p. 87-100. [CrossRef] [Google Scholar]
  13. Croitoru, C.V., et al., Thermodynamic investigation on an innovative unglazed transpired solar collector. Solar Energy, 2016. 131: p. 21-29. [CrossRef] [Google Scholar]
  14. Zhang, T., et al., The application of air layers in building envelopes: A review. Applied Energy, 2016. 165: p. 707-734. [CrossRef] [Google Scholar]
  15. Dymond, C. and C. Kutscher, Development of a flow distribution and design model for transpired solar collectors. Solar Energy, 1997. 60(5): p. 291-300. [CrossRef] [Google Scholar]
  16. Molineaux, B., B. Lachal, and O. Guisan, Thermal analysis of five unglazed solar collector systems for the heating of outdoor swimming pools. Solar Energy, 1994. 53(1): p. 27-32. [CrossRef] [Google Scholar]
  17. Gao, L., H. Bai, and S. Mao, Potential application of glazed transpired collectors to space heating in cold climates. Energy Conversion and Management, 2014. 77: p. 690-699. [CrossRef] [Google Scholar]
  18. Alkilani, M.M., et al., Review of solar air collectors with thermal storage units. Renewable and Sustainable Energy Reviews, 2011. 15(3): p. 1476-1490. [CrossRef] [Google Scholar]
  19. Leon, M.A. and S. Kumar, Mathematical modeling and thermal performance analysis of unglazed transpired solar collectors. Solar Energy, 2007. 81(1): p. 62-75. [CrossRef] [Google Scholar]
  20. Zhang, T., et al., A glazed transpired solar wall system for improving indoor environment of rural buildings in northeast China. Building and Environment, 2016. 98: p. 158-179. [CrossRef] [Google Scholar]
  21. Rosaria Ciriminna, F.M., Mario Pecoraino, Mario Pagliaro, Solar Air Heating and Ventilation in Buildings: A Key Component in the Forthcoming Renewable Energy Mix. Energy Technology, 2017. 5: p. 1-9. [CrossRef] [Google Scholar]
  22. Paya-Marin, M.A., et al., Large scale test of a novel back-pass non-perforated unglazed solar air collector. Renewable Energy, 2015. 83: p. 871-880. [CrossRef] [Google Scholar]
  23. Brown, C., et al., Transpired Solar Collector Installations in Wales and England. Energy Procedia, 2014. 48: p. 18-27. [CrossRef] [Google Scholar]
  24. Januševičius, K., et al., Validation of Unglazed Transpired Solar Collector Assisted Air Source Heat Pump Simulation Model. Energy Procedia, 2016. 95: p. 167-174. [CrossRef] [Google Scholar]
  25. Wang, X., et al., A simplified method for evaluating thermal performance of unglazed transpired solar collectors under steady state. Applied Thermal Engineering, 2017. 117: p. 185-192. [CrossRef] [Google Scholar]
  26. Paya-Marin, M.A., Chapter 5 - Solar Air Collectors for Cost-Effective Energy-Efficient Retrofitting, in Cost-Effective Energy Efficient Building Retrofitting. 2017, Woodhead Publishing. p. 141-168. [CrossRef] [Google Scholar]
  27. Belusko, M., W. Saman, and F. Bruno, Performance of jet impingement in unglazed air collectors. Solar Energy, 2008. 82(5): p. 389-398. [CrossRef] [Google Scholar]
  28. Cordeau, S. and S. Barrington, Performance of unglazed solar ventilation air pre-heaters for broiler barns. Solar Energy, 2011. 85(7): p. 1418-1429. [CrossRef] [Google Scholar]
  29. Chan, H.-Y., et al., Thermal Analysis of Flat and Transpired Solar Facades. Energy Procedia, 2014. 48: p. 1345-1354. [CrossRef] [Google Scholar]
  30. Razak, A.A., et al., Review on matrix thermal absorber designs for solar air collector. Renewable and Sustainable Energy Reviews, 2016. 64: p. 682-693. [CrossRef] [Google Scholar]
  31. Chan, H.Y., J. Zhu, and S. Riffat, Heat Transfer Analysis of the Transpired Solar Facade. Energy Procedia, 2013. 42: p. 123-132. [CrossRef] [Google Scholar]
  32. Arulanandam, S.J., K.G.T. Hollands, and E. Brundrett, A CFD heat transfer analysis of the transpired solar collector under no-wind conditions. Solar Energy, 1999. 67(1-3): p. 93-100. [CrossRef] [Google Scholar]
  33. Vaziri, R., M. Ilkan, and F. Egelioglu, Experimental performance of perforated glazed solar air heaters and unglazed transpired solar air heater. Solar Energy, 2015. 119: p. 251-260. [CrossRef] [Google Scholar]
  34. Hall, R. and J. Blower, Low-emissivity Transpired Solar Collectors. Energy Procedia, 2016. 91: p. 56-63. [CrossRef] [Google Scholar]
  35. Li, X., C. Li, and B. Li, Net heat gain assessment on a glazed transpired solar air collector with slit-like perforations. Applied Thermal Engineering, 2016. 99: p. 1-10. [CrossRef] [Google Scholar]
  36. Li, S., et al., Airflow and thermal analysis of flat and corrugated unglazed transpired solar collectors. Solar Energy, 2013. 91: p. 297-315. [CrossRef] [Google Scholar]
  37. Collins, M.R. and H. Abulkhair, An evaluation of heat transfer and effectiveness for unglazed transpired solar air heaters. Solar Energy, 2014. 99: p. 231-245. [CrossRef] [Google Scholar]
  38. Zheng, W., et al., Thermal characteristics of a glazed transpired solar collector with perforating corrugated plate in cold regions. Energy, 2016. 109: p. 781-790. [CrossRef] [Google Scholar]
  39. Croitoru, C., et al., Thermal Evaluation of an Innovative Type of Unglazed Solar Collector for Air Preheating. Energy Procedia, 2016. 85: p. 149-155. [CrossRef] [Google Scholar]
  40. Perisoglou, E. and D. Dixon, Experimental Monitoring of Different Dimensions of Transpired Solar Collectors. Energy Procedia, 2015. 70: p. 111-120. [CrossRef] [Google Scholar]
  41. Hollick, J.C., Solar cogeneration panels. Renewable Energy, 1998. 15(1-4): p. 195-200. [CrossRef] [Google Scholar]
  42. Hollick, J.C., Unglazed solar wall air heaters. Renewable Energy, 1994. 5(1-4): p. 415-421. [CrossRef] [Google Scholar]
  43. Hollick, J.C., World’s largest and tallest solar recladding. Renewable Energy, 1996. 9(1): p. 703-707. [CrossRef] [Google Scholar]
  44. Eryener, D. and H. Akhan, The Performance of First Transpired Solar Collector Installation in Turkey. Energy Procedia, 2016. 91: p. 442-449. [CrossRef] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.