Open Access
Issue
E3S Web Conf.
Volume 32, 2018
EENVIRO 2017 Workshop - Advances in Heat and Transfer in Built Environment
Article Number 01022
Number of page(s) 5
DOI https://doi.org/10.1051/e3sconf/20183201022
Published online 21 February 2018
  1. Moon, J.H., et al., Thermal comfort analysis in a passenger compartment considering the solar radiation effect. International Journal of Thermal Sciences, 2016. 107: p. 77-88. [CrossRef] [Google Scholar]
  2. Kaynakli, O. and M. Kilic, An investigation of thermal comfort inside an automobile during the heating period. Applied Ergonomics, 2005. 36(3): p. 301-312. [CrossRef] [PubMed] [Google Scholar]
  3. Li, W. and J. Sun, Numerical simulation and analysis of transport air conditioning system integrated with passenger compartment. Applied Thermal Engineering, 2013. 50(1): p. 37-45. [CrossRef] [Google Scholar]
  4. Danca, P., et al., On the Possibility of CFD Modeling of the Indoor Environment in a Vehicle. Energy Procedia, 2017. 112: p. 656-663. [Google Scholar]
  5. Zhang, H., et al., Studies of air-flow and temperature fields inside a passenger compartment for improving thermal comfort and saving energy. Part I: Test/numerical model and validation. Applied Thermal Engineering, 2009. 29(10): p. 2022-2027. [CrossRef] [Google Scholar]
  6. Cheng, Y., J. Niu, and N. Gao, Thermal comfort models: A review and numerical investigation. Building and Environment, 2012. 47(Supplement C): p. 13-22. [CrossRef] [Google Scholar]
  7. Bode, F., et al., The influence of the Inlet angle of vehicle air diffuser on the thermal comfort of passengers. ENERGY and ENVIRONMENT (CIEM), 2017 International Conference on, 2017: p. 442-446. [CrossRef] [Google Scholar]
  8. Slater, K., Human Comfort. Vol. 1. 1985. [Google Scholar]
  9. ISO, E., ISO 7730 - Ergonomics of the thermal environment—Analytical determination and interpretation of thermal comfort using calculation of the PMV and PPD indices and local thermal comfort criteria. 2005. [Google Scholar]
  10. ISO, Ergonomics of the thermal environment-Evaluation of thermal environments in vehicles Part 3: Evaluation of thermal comfort using human subjects, in ISO 14505-3:2006. 2006. [Google Scholar]
  11. ISO, Ergonomics of the thermal environment - Evaluation of thermal environments in vehicles - Part 2: Determination of equivalent temperature in ISO 14505-2:2006. 2006. [Google Scholar]
  12. ISO, Ergonomics of the thermal environment - Evaluation of thermal environments in vehicles Part 1: Principles and methods for assessment of thermal stress, in ISO 14505-1:2007. 2007. [Google Scholar]
  13. Angel Dogeanu, et al., Conception of a simplified seated thermal manikin for CFD validation purposes. Romanian Journal of Civil Engineering, 2014. 5(1). [Google Scholar]
  14. Meslem, A., et al., Comparison of turbulence models in simulating jet flow from a cross-shaped orifice. European Journal of Mechanics - B/Fluids, 2014. 44: p. 100-120. [CrossRef] [Google Scholar]
  15. Florin Bode, et al., Numerical prediction of wall shear rate in impinging cross-shaped jet at moderate Reynolds number. Scientific Bulletin - University Politehnica of Bucharest, Series D: Mechanical Engineering, 2014. 76(12): p. 8. [Google Scholar]
  16. FluentInc, Fluent 18.2 Help. [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.