Open Access
E3S Web Conf.
Volume 37, 2018
The Sixth International Congress “Water, Waste and Environment” (EDE6-2017)
Article Number 02005
Number of page(s) 7
Section Waste Management and Environment
Published online 25 May 2018
  1. F. Fu and Q. Wang, “Removal of heavy metal ions from wastewaters: A review,” J. Environ. Manage., vol. 92, no. 3, pp. 407–418, Mar. 2011. [CrossRef] [PubMed] [Google Scholar]
  2. R. Han, H. Li, Y. Li, J. Zhang, H. Xiao, and J. Shi, “Biosorption of copper and lead ions by waste beer yeast,” J. Hazard. Mater., vol. 137, no. 3, pp. 1569–1576, Oct. 2006. [CrossRef] [Google Scholar]
  3. N. T. Abdel-Ghani and G. A. El-Chaghaby, “Biosorption for metal ions removal from aqueous solutions: a review of recent studies,” Int J Latest Res Sci Technol, vol. 3, no. 1, pp. 24–42, 2014. [Google Scholar]
  4. A. Malik, “Metal bioremediation through growing cells,” Environ. Int., vol. 30, no. 2, pp. 261–278, Apr. 2004. [CrossRef] [PubMed] [Google Scholar]
  5. Z. Mohamed, A. Abdelkarim, K. Ziat, and S. Mohamed, “Adsorption of Cu (II) onto natural clay: Equilibrium and thermodynamic studies,” system, vol. 10, p. 11, 2016. [Google Scholar]
  6. H. Bousfiha, E.-H. Rifi, A. Essamri, and Z. Hatim, “L’extraction liquide–solide du zinc par des supports à base de phosphate de calcium,” Comptes Rendus Chim., vol. 8, no. 2, pp. 215–218, Feb. 2005. [CrossRef] [Google Scholar]
  7. A. Ouass, I. Ismi, H. Elaidi, A. Lebkiri, M. Cherkaoui, and E. H. Rifi, “Mathematical Modeling Of The Adsorption Of Trivalent Chromium By The Sodium Polyacrylate Beads,” JMES, vol. 8, no. 10, pp. 3448–3456, 2017. [Google Scholar]
  8. H. Taouil, S. I. Ahmed, E. Rifi, and A. El Assyry, “Zinc extraction from dilute aqueous solutions, by hydrogels of polyacrylic acid-polyacrylate sodium (Extraction du zinc à partir des solutions aqueuses diluées, par d’hydrogels d’acide polyacrylique-polyacrylate de sodium),” JMES, vol. 5, no. 4, pp. 1069–1074. [Google Scholar]
  9. E. Barbolani, M. Clauser, F. Pantani, and R. Gellini, “Residual heavy metal (Cu and Cd) removal byIris Pseudacorus,” Water. Air. Soil Pollut., vol. 28, no. 3, pp. 277–282, 1986. [Google Scholar]
  10. F. Kaczala, M. Marques, and W. Hogland, “Lead and vanadium removal from a real industrial wastewater by gravitational settling/sedimentation and sorption onto Pinus sylvestris sawdust,” Bioresour. Technol., vol. 100, no. 1, pp. 235–243, Jan. 2009. [CrossRef] [Google Scholar]
  11. A. Saeed, M. Iqbal, and M. W. Akhtar, “Removal and recovery of lead(II) from single and multimetal (Cd, Cu, Ni, Zn) solutions by crop milling waste (black gram husk),” J. Hazard. Mater., vol. 117, no. 1, pp. 65–73, Jan. 2005. [CrossRef] [Google Scholar]
  12. H. J. Park, S. W. Jeong, J. K. Yang, B. G. Kim, and S. M. Lee, “Removal of heavy metals using waste eggshell,” J. Environ. Sci., vol. 19, no. 12, pp. 1436–1441, 2007. [CrossRef] [Google Scholar]
  13. O. S. Amuda, F. E. Adelowo, and M. O. Ologunde, “Kinetics and equilibrium studies of adsorption of chromium(VI) ion from industrial wastewater using Chrysophyllum albidum (Sapotaceae) seed shells,” Colloids Surf. B Biointerfaces, vol. 68, no. 2, pp. 184–192, Feb. 2009. [CrossRef] [PubMed] [Google Scholar]
  14. N. Feng, X. Guo, S. Liang, Y. Zhu, and J. Liu, “Biosorption of heavy metals from aqueous solutions by chemically modified orange peel,” J. Hazard. Mater., vol. 185, no. 1, pp. 49–54, Jan. 2011. [CrossRef] [Google Scholar]
  15. Y. N. Mata, M. L. Blàzquez, A. Ballester, F. Gonzàlez, and J. A. Munoz, “Sugarbeet pulp pectin gels as biosorbent for heavy metals: Preparation and determination of biosorption and desorption characteristics,” Chem. Eng. J., vol. 150, no. 2–3, pp. 289–301, Aug. 2009. [CrossRef] [Google Scholar]
  16. W. E. Oliveira, A. S. Franca, L. S. Oliveira, and S. D. Rocha, “Untreated coffee husks as biosorbents for the removal of heavy metals from aqueous solutions,” J. Hazard. Mater., vol. 152, no. 3, pp. 1073–1081, Apr. 2008. [CrossRef] [Google Scholar]
  17. Y.Essaadaoui, L.Kadiri, E.H.Rifi, and A.Lebkiri, “Microstructure characterization of the barks of eucalyptus “eucalyptus,” IJSER, vol. 7, no. 11, pp. 1382–1387, Nov. 2016. [Google Scholar]
  18. S. Elanza, A. Lebkiri, S. Marzak, E. H. Rifi, M. Lebkiri, and C. Satif, “Removal of lead ions from aqueous solution by the sugarcane bagasse,” J Mater Env. Sci, vol. 5, no. 5, pp. 1591–1598, 2014. [Google Scholar]
  19. T. C. Wang, J. C. Weissman, G. Ramesh, R. Varadarajan, and J. R. Benemann, “Heavy metal binding and removal by Phormidium,” Bull. Environ. Contam. Toxicol., vol. 60, no. 5, pp. 739–744, 1998. [CrossRef] [PubMed] [Google Scholar]
  20. I. Kim, M. Lee, and S. Wang, “Heavy metal removal in groundwater originating from acid mine drainage using dead Bacillus drentensis sp. immobilized in polysulfone polymer,” J. Environ. Manage., vol. 146, pp. 568–574, Dec. 2014. [CrossRef] [PubMed] [Google Scholar]
  21. A. Sarimeseli, “Microwave drying characteristics of coriander (Coriandrum sativum L.) leaves,” Energy Convers. Manag., vol. 52, no. 2, pp. 1449–1453, Feb. 2011. [CrossRef] [Google Scholar]
  22. M. K. Shahwar, A. H. El-Ghorab, F. M. Anjum, M. S. Butt, S. Hussain, and M. Nadeem, “Characterization of Coriander (Coriandrum sativum L.) Seeds and Leaves: Volatile and Non Volatile Extracts,” Int. J. Food Prop., vol. 15, no. 4, pp. 736–747, Jul. 2012. [CrossRef] [Google Scholar]
  23. Z. Zeković et al., “Chemical characterization of polyphenols and volatile fraction of coriander (Coriandrum sativum L.) extracts obtained by subcritical water extraction,” Ind. Crops Prod., vol. 87, pp. 54–63, Sep. 2016. [CrossRef] [Google Scholar]
  24. K. Ghedira and P. Goetz, “Coriandrum sativum L. (Apiaceae) : Coriandre,” Phytothérapie, vol. 13, no. 2, pp. 130–134, Apr. 2015. [CrossRef] [Google Scholar]
  25. B. Laribi, K. Kouki, M. M’Hamdi, and T. Bettaieb, “Coriander (Coriandrum sativum L.) and its bioactive constituents,” Fitoterapia, vol. 103, pp. 9–26, Jun. 2015. [CrossRef] [Google Scholar]
  26. K. Msaada et al., “Antioxidant activity of methanolic extracts from three coriander (Coriandrum sativum L.) fruit varieties,” Arab. J. Chem., Dec. 2013. [Google Scholar]
  27. H. Wangensteen, A. B. Samuelsen, and K. E. Malterud, “Antioxidant activity in extracts from coriander,” Food Chem., vol. 88, no. 2, pp. 293–297, Nov. 2004. [CrossRef] [Google Scholar]
  28. P. J. Delaquis, K. Stanich, B. Girard, and G. Mazza, “Antimicrobial activity of individual and mixed fractions of dill, cilantro, coriander and eucalyptus essential oils,” Int. J. Food Microbiol., vol. 74, no. 1, pp. 101–109, 2002. [CrossRef] [PubMed] [Google Scholar]
  29. S. Mandal and M. Mandal, “Coriander (Coriandrum sativum L.) essential oil: Chemistry and biological activity,” Asian Pac. J. Trop. Biomed., vol. 5, no. 6, pp. 421–428, Jun. 2015. [CrossRef] [Google Scholar]
  30. V. Chithra and S. Leelamma, “Coriandrum sativum—mechanism of hypoglycemic action,” Food Chem., vol. 67, no. 3, pp. 229–231, 1999. [CrossRef] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.