Open Access
E3S Web Conf.
Volume 38, 2018
2018 4th International Conference on Energy Materials and Environment Engineering (ICEMEE 2018)
Article Number 01004
Number of page(s) 5
Section Environmental Science and Environmental Engineering
Published online 04 June 2018
  1. A. Laaksonen, M. Kulmala, C D. O’Dowd, et al. The role of VOC oxidation products in continental new particle formation[J]. Atmospheric Chemistry & Physics, 2008, 8(10): 7819-7841 [Google Scholar]
  2. A. Kansal. Sources and reactivity of NMHCs and VOCs in the atmosphere: a review.[J]. Journal of Hazardous Materials, 2009, 166(1): 17-26 [CrossRef] [PubMed] [Google Scholar]
  3. K J. Kim, J C. Kim, J. Kim, et al. Development of hybrid technology using E-beam and catalyst for aromatic VOCs control[J]. Radiation Physics & Chemistry, 2005, 73(2): 85-90 [CrossRef] [Google Scholar]
  4. Y. Wang, Q I. Fei, X X. Lun. Temporal and Spatial Distribution Rule of Volatile Organic Compounds in Ambient Air around Urban Traffic Roads in Beijing[J]. Research of Environmental Sciences, 2010, 23(5): 596-600 [Google Scholar]
  5. J F. Pankow, W. Luo, D A. Bender, et al. Concentrations and co-occurrence correlations of 88 volatile organic compounds (VOCs) in the ambient air of 13 semi-rural to urban locations in the United States[J]. Atmospheric Environment, 2003, 37(36): 5023-5046 [CrossRef] [Google Scholar]
  6. J. Li, S D. Xie, L M. Zeng, et al. Characterization of ambient volatile organic compounds and their sources in Beijing, before, during, and after Asia-Pacific Economic Cooperation China 2014[J]. Atmospheric Chemistry & Physics, 2015, 15(8): 12453-12490 [Google Scholar]
  7. Y. Zou, X J. Deng, D. Zh, et al. Characteristics of 1 year of observational data of VOCs, NOx and O3 at a suburban site in Guangzhou, China[J]. Atmospheric Chemistry & Physics, 2015, 15(12): 6625-6636 [CrossRef] [Google Scholar]
  8. S H M. Lam, S M. Saunders, H. Guo, et al. Modelling VOC source impacts on high ozone episode days observed at a mountain summit in Hong Kong under the influence of mountain-valley breezes[J]. Atmospheric Environment, 2013, 81(2): 166-176 [CrossRef] [Google Scholar]
  9. Wentworth G R, Aklilu Y A, Landis M S, et al. Impacts of a large boreal wildfire on ground level atmospheric concentrations of PAHs, VOCs and ozone[J]. Atmospheric Environment, 2018 [Google Scholar]
  10. R. Betha, V. Selvam, D R. Blake, et al. Emission characteristics of ultrafine particles and volatile organic compounds in a commercial printing center[J]. Journal of the Air & Waste Management Association, 2011, 61(11): 1093-101 [CrossRef] [Google Scholar]
  11. A K. Baker, A J. Beyersdorf, L A. Doezema, et al. Measurements of nonmethane hydrocarbons in 28 United States cities[J]. Atmospheric Environment, 2008, 42(1): 170-182 [CrossRef] [Google Scholar]
  12. S G. Brown, A. Frankel, H R. Hafner. Source apportionment of VOCs in the Los Angeles area using positive matrix factorization[J]. Atmospheric Environment, 2007, 41(2): 223-237 [CrossRef] [Google Scholar]
  13. H. Guo, S C. Lee, P K K. Louie, et al. Characterization of hydrocarbons, halocarbons and carbonyls in the atmosphere of Hong Kong[J]. Chemosphere, 2004, 57(10): 1363-1372 [CrossRef] [PubMed] [Google Scholar]
  14. X. Xin, S. Min, L. Ying. The diurnal variation of ambient VOCs and their role in ozone formation:case study in summer in Guangzhou[J]. Acta Scientiae Circumstantiae, 2009, 29(1): 54-62 [Google Scholar]
  15. W. Wei, S. Wang, J. Hao, et al. Trends of chemical speciation profiles of anthropogenic volatile organic compounds emissions in China, 2005-2020[J]. Frontiers of Environmental Science & Engineering, 2014, 8(1): 27-41 [CrossRef] [Google Scholar]
  16. S. Sillman. The relation between ozone, NO x, and hydrocarbons in urban and polluted rural environments[J]. Atmospheric Environment, 1999, 33(12): 1821-1845 [CrossRef] [Google Scholar]
  17. J. Zhang J, M. Shao, University P, et al. Study on Composition of Ambient Volatile Organic Compounds (VOCs) in Beijing City[J]. Research of Environmental Sciences, 2004, 17(5): 1-5 [Google Scholar]
  18. W P L. Carter. Development of Ozone Reactivity Scales for Volatile Organic Compounds[J]. Journal of the Air & Waste Management Association, 1994, 44(7): 881-899 [CrossRef] [Google Scholar]
  19. B H. Czader, B S T. Kim, W P L. Carter. A study of VOC reactivity in the Houston-Galveston air mixture utilizing an extended version of SAPRC-99 chemical mechanism[J]. Atmospheric Environment, 2008, 42(23): 5733-5742 [CrossRef] [Google Scholar]
  20. S. Xie, X. Tian. Formation Mechanism of Secondary Organic Aerosols from the Reaction of Volatile and Semi-Volatile Compounds[J]. Progress in Chemistry, 2010, 22(4): 727-733 [Google Scholar]
  21. S J. Sjostedt, J G. Slowik, J R. Brook, et al. Diurnally resolved particulate and VOC measurements at a rural site: indication of significant biogenic secondary organic aerosol formation[J]. Atmospheric Chemistry & Physics, 2011, 11(12): 5745-5760 [CrossRef] [Google Scholar]
  22. T E. Lane, N M. Donahue, S N Pandis. Simulating secondary organic aerosol formation using the volatility basis-set approach in a chemical transport model[J]. Atmospheric Environment, 2008, 42(32): 7439-7451 [CrossRef] [Google Scholar]
  23. Chan, Lo-Yin, Chu, Kam-Wah, Zou, Shi-Chun, et al. Characteristics of nonmethane hydrocarbons (NMHCs) in industrial, industrial-urban, and industrial-suburban atmospheres of the Pearl River Delta (PRD) region of south China[J]. Journal of Geophysical Research Atmospheres, 2006, 111(D11):- [CrossRef] [Google Scholar]
  24. R. Perry, I L. Gee. Vehicle emissions in relation to fuel composition[J]. Science of the Total Environment, 1995, 169(1-3):149-156 [CrossRef] [Google Scholar]
  25. P A. SCHEFF, R A. SCHEFF. Receptor modeling of volatile organic compounds. I: emission inventory and validation[J]. Environmental Science & Technology, 1993, 27(4): 617-625 [CrossRef] [Google Scholar]
  26. M O. Andreae. Emission of trace gases and aerosols from biomass burning[J]. Global Biogeochemical Cycles, 2001, 15(4): 955-966 [CrossRef] [Google Scholar]
  27. D. Brocco, R. Fratarcangeli, L. Lepore, et al. Determination of aromatic hydrocarbons in urban air of Rome[J]. Atmospheric Environment, 1997, 31(4): 557-566 [CrossRef] [Google Scholar]
  28. C Y M D. Santos. Atmospheric distribution of organic compounds from urban areas near a coal-fired power station[J]. Atmospheric Environment, 2004, 38(9): 1247-1257 [CrossRef] [Google Scholar]
  29. Y M. Zhou, Z P. Hao, H L. Wang. Pollution and Source of Atmospheric Volatile Organic Compounds in Urban-rural Juncture Belt Area in Beijing[J]. Environmental Science, 2011, 32(12): 3560-3565 [Google Scholar]
  30. B. Barletta, S. Meinardi, F S. Rowland, et al. Volatile organic compounds in 43 Chinese cities[J]. Atmospheric Environment, 2005, 39(32): 5979-5990 [CrossRef] [Google Scholar]
  31. Y. Song, M. Shao, Y. Liu, et al. Source apportionment of ambient volatile organic compounds in Beijing[J]. Environmental Science & Technology, 2007, 41(12): 4348-4853 [CrossRef] [PubMed] [Google Scholar]
  32. X. Wang. Analysis of Ambient VOCs Levels and Potential Sources in Windsor[J]. University of Windsor, 2014 [Google Scholar]
  33. E. Vega, V. Mugica, R. Carmona, et al. Hydrocarbon source apportionment in Mexico City using the chemical mass balance receptor model[J]. Atmospheric Environment, 2000, 34(24): 4121-4129 [CrossRef] [Google Scholar]
  34. M. Abu-Allaban. A preliminary apportionment of the sources of ambient PM_(10), PM_(2.5), and VOCs in Cairo[J]. Atmospheric Environment, 2002, 36(35): 5549-5557 [CrossRef] [Google Scholar]
  35. C. Cai, F. Geng, Q. Yu, et al. Source apportionment of VOCs at city centre of Shanghai in summer[J]. Acta Scientiae Circumstantiae, 2010, 30(5): 926-934 [Google Scholar]
  36. P. Paatero U. Tapper. Positive matrix factorization: A non-negative factor model with optimal utilization of error estimates of data values[J]. Environmetrics, 1994, 5(2): 111-126 [CrossRef] [Google Scholar]
  37. M. Sarkhosh, A H. Mahvi, M. Yunesian, et al. Source apportionment of volatile organic compounds in Tehran, Iran.[J]. Bulletin of Environmental Contamination & Toxicology, 2013, 90(4): 440-445 [CrossRef] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.