Open Access
E3S Web Conf.
Volume 40, 2018
River Flow 2018 - Ninth International Conference on Fluvial Hydraulics
Article Number 02016
Number of page(s) 8
Section River morphodynamics and restoration
Published online 05 September 2018
  1. L. Zong and H. Nepf, Geomorphology, Flow and deposition in and around a finitepatch of vegetation , 116, 363-372 (2010). [Google Scholar]
  2. A. Vargas-luna, A. Crosato, G. Calvani, and W.S.J. Uijttewaal, Advances in WaterResources, Representing plants as rigid cylinders in experiments and models , 93, 205-222 (2016). [Google Scholar]
  3. K. Västilä and J. Järvelä, J. Soils Sediments, Characterizing natural riparianvegetation for modeling of flow and suspended sediment transport , 1-17 (2017). [Google Scholar]
  4. J. Järvelä, J. Hydrol., Effect of submerged flexible vegetation on flow structure andresistance , 307, 233-241 (2005). [Google Scholar]
  5. C.I. Thornton, S.R. Abt, and W.P. Clary, Journal of the American water resourcesassosiation, Vegetation influence on small stream siltation , 33, 1279-1288 (1998). [Google Scholar]
  6. D. Corenblit, J. Steiger, A.M. Gurnell, E. Tabacchi, and L. Roques, Earth Surf.Process. Landforms, Control of sediment dynamics by vegetation as a key functiondriving biogeomorphic succession within fluvial corridors , 1810, 1790-1810 (2009). [Google Scholar]
  7. S. Temmerman, G. Govers, P. Meire, and S. Wartel, Mar. Geol., Modelling long-term tidal marsh growth under changing tidal conditions and suspended sedimentconcentrations, Scheldt estuary, Belgium , 193, 151-169 (2003). [Google Scholar]
  8. A.F. Lightbody and H.M. Nepf, Limnol. Oceanogr., Prediction of velocity profilesand longitudinal dispersion in salt marsh vegetation , 51, 218-228 (2006). [Google Scholar]
  9. K. Vastila, J. Jarvela, and H. Koivusalo, J. Hydraul. Eng., Flow-Vegetation-SedimentInteraction in a Cohesive Compound Channel , 142 (2016). [Google Scholar]
  10. F. Ganthy, L. Soissons, P.-G. Sauriau, R. Verney, and A. Sottolichio, Sedimentology, Effects of short flexible seagrass Zostera noltei on flow, erosion and depositionprocesses determined using flume experiments , 62, 997-1023, (2014). [Google Scholar]
  11. M. Jesson, M. Sterling, and J. Bridgeman, Flow Meas. Instrum., Despiking velocitytime-series-Optimisation through the combination of spike detection andreplacementmethods , 30, 45-51 (2013). [Google Scholar]
  12. M. Parsheh, F. Sotiropoulos, and F. Porté-Agel, J. Hydraul. Eng., Estimation ofPower Spectra of Acoustic-Doppler Velocimetry Data Contaminated withIntermittent Spikes , 136, 368-378 (2010). [Google Scholar]
  13. S. Yang, S. Tan, and S. Lim, J. Hydraul. Eng., Velocity Distribution and Dip-Phenomenon in Smooth Uniform Open Channel Flows , 130, 1179-1186 (2005). [Google Scholar]
  14. M. Ghisalberti and H. Nepf, Environ. Fluid Mech., The structure of the shear layerin flows over rigid and flexible canopies , 6, 277-301 (2006). [Google Scholar]
  15. B.L. White and H.M. Nepf, Water Resour. Res., A vortex-based model of velocityand shear stress in a partially vegetated shallow channel , 44, 1-15 (2008). [Google Scholar]
  16. R.G. Sharpe and C.S. James, Water SA, Deposition of sediment from suspension inemergent vegetation , 32, 211-218 (2006). [Google Scholar]
  17. E. Follett and H. Nepf, Estuaries and Coasts, Particle Retention in a SubmergedMeadow and Its Variation Near the Leading Edge , 1-10 (2017). [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.