Open Access
Issue
E3S Web Conf.
Volume 40, 2018
River Flow 2018 - Ninth International Conference on Fluvial Hydraulics
Article Number 05027
Number of page(s) 7
Section Fluid mechanics and sediment processes
DOI https://doi.org/10.1051/e3sconf/20184005027
Published online 05 September 2018
  1. T. Asaeda & J. Imberger, Structure of bubble plumes in linearly stratified environments. J. Fluid Mech. 249 35-57 (1993). [CrossRef] [Google Scholar]
  2. A. Fabregat, A. C. Poje, T. M. Özgökmen, W. K. Dewar & N. Wienders, Numerical simulations of turbulent thermal bubble and hybrid plumes. Ocean Modelling, 90 16-28 (2015). [CrossRef] [Google Scholar]
  3. G. B. Sahoo & D. Luketina, Modeling of bubble plume design and oxygen transfer for reservoir restoration. Water Research, 37(2) 393-401 (2003). [CrossRef] [Google Scholar]
  4. S. A. Socolofsky & E. E. Adams, Liquid volume fluxes in stratified multiphase plumes. Journal of Hydraulic Engineering, 129(11) 905-914 (2003). [CrossRef] [Google Scholar]
  5. P. D. Yapa, L. Zheng & K. Nakata, Modeling underwater oil/gas jets and plumes. J. Hydr. Eng., 125(5) 481-491 (1999). [CrossRef] [Google Scholar]
  6. I. Lima Neto, D. Zhu, N. Rajaratnam, T. Yu, M. Spafford & P. McEachern, Dissolved oxygen downstream of an effluent outfall in an ice-covered river: natural and artificial aeration. J. Env. Eng. 133(11) 1051-1060 (2007). [CrossRef] [Google Scholar]
  7. S. Laín, D. Bröder, M. Sommerfeld & M. F. Göz, Modelling hydrodynamics and turbulence in a bubble column using the Euler-Lagrange procedure. Int. J. Multiphase Flow 28(8) 1381-1407 (2002). [CrossRef] [Google Scholar]
  8. E. Delnoij, J. A. M. Kuipers & W. P. M. van Swaail, Dynamic simulation of gas-liquid two-phase flow: effect of column aspect ratio on the flow structure. Chem. Eng. Sc., 52(21-22), 3759-3772 (1997) [CrossRef] [Google Scholar]
  9. B. Fraga, T. Stoesser, C. C. K. Lai & S. A. Socolofsky, A LES-based Eulerian-Lagrangian approach to predict the dynamics of bubble plumes. Ocean Modelling 97 27-36 (2016). [CrossRef] [Google Scholar]
  10. P. D. Yapa, l. Zheng, Simulation of oil spills from underwater accidents I: Model development. J. Hydr. Res. 35(5) 673-681 (1997). [CrossRef] [Google Scholar]
  11. O. Johansen, DeepBlow - a Lagrangian plume model for deep water blowouts. Spill Science & Technology Bulletin 6(2) 103-111 (2000). [CrossRef] [Google Scholar]
  12. L. Zheng, P. D. Yapa & F. Chen, A model for simulating deepwater oil and gas blowouts-Part I: Theory and model formulation. J. Hydr. Res. 41(4) 339-351 (2002). [CrossRef] [Google Scholar]
  13. Y. Le Moullec, O. Potier, C. Gentric & J. P. Leclerc, Flow field and residence time distribution simulation of a cross-flow gas-liquid wastewater treatment reactor using CFD. Chem. Eng. Sc. 63 2436-2449 (2008). [CrossRef] [Google Scholar]
  14. Y. Wang, S. Simakhina & M. Sussman, M., A hybrid level set-volume constraint method for incompressible two-phase flow. J. Comp. Physics 231 6438-6471 (2012). [CrossRef] [Google Scholar]
  15. B. Chen, Y. Song, M. Nishio & M. Akai, Large-eddy simulation of double-plume formation induced by CO2 dissolution in the ocean. Tellus 55B 723-730 (2003). [CrossRef] [Google Scholar]
  16. B. Decrop, T. De Mulder, E. Toorman & M. Sas, Large-eddy simulations of turbidity plumes in crossflow. European Journal of Mechanics B/Fluids 53 68-84 (2015). [CrossRef] [Google Scholar]
  17. S. Bomminayuni & T. Stoesser, Turbulence statistics in an open-channel flow over a rough bed, J. Hydr. Eng. 137(11) 1347-1358 (2011). [CrossRef] [Google Scholar]
  18. J. Bai, F. Hongwei & T. Stoesser, Transport and deposition of fine sediment in open channels with different aspect ratios. Earth Surf. Process. Landforms 38 591-600 (2013). [CrossRef] [Google Scholar]
  19. S. Kara, T. Stoesser & T. W. Sturm, Flow dynamics though a submerged bridge opening with overtopping. J. Hydr. Res. 2 186-195 (2015). [CrossRef] [Google Scholar]
  20. M. Cevheri, R. McSherry & T. Stoesser, A local mesh refinement approach for largeeddy simulations of turbulent flows. Int. J. Numer. Meth. Fluids 82 261-285 (2016). [CrossRef] [Google Scholar]
  21. B. Fraga, & T. Stoesser, Influence of bubble size, diffuser width, and flow rate on the integral behavior of bubble plumes. J. Geophys. Res. Oceans 121 3887-3904 (2016). [CrossRef] [Google Scholar]
  22. X. Yang, X. Zhang, Z. Li, & G. W. He, A smoothing technique for discrete delta functions with application to immersed boundary method in moving boundary simulations. J. Comp. Physics, 228(20), 7821-7836 (2009). [CrossRef] [Google Scholar]
  23. M. Rezvani, Bubble plumes in crossflow: laboratory and field measurements of their fluid dynamic properties with application to lake aeration and management. PhD thesis, Texas A&M University (2016). [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.