Open Access
Issue
E3S Web Conf.
Volume 54, 2018
25th Salt Water Intrusion Meeting (SWIM 2018)
Article Number 00013
Number of page(s) 6
DOI https://doi.org/10.1051/e3sconf/20185400013
Published online 17 September 2018
  1. Andersen, S., Baron L., Gudbjerg J., Gregersen J., Chapellier D., Jakobsen R., Postma D., 2007. Discharge of nitrate-containing groundwater into a coastal marine environment. J. Hydrol., 336, 98–114 [CrossRef] [Google Scholar]
  2. Bolałek J. 1990, Ionic macrocomponets of the interstitial waters of Puck Bay. Oceanologia, 33, 131–159 [Google Scholar]
  3. Burnett, W.C., Aggarwal P.K., Aureli A., Bokuniewicz H.J., Cable J.E., Charette M.A., Kontar E., Krupa S., Kulkarni K.M., Loveless A., Moore W.S., Oberdorfer J.A., Oliveira J., Ozyurt N., Povinec P., Privitera A.M.G., Rajar R., Ramessur R.T., Scholten J., Stieglitz T., Taniguchi M., Turner J.V., 2006. Quantifying submarine groundwater discharge in the coastal zone via multiple methods. Sci. Total Environ., 367, 498–543 [Google Scholar]
  4. Charette, M.A., Buesseler K.O., Andrews J.E., 2001. Utility of radium isotopes for evaluating the input and transport of groundwater-derived nitrogen to a Cape Cod estuary. Limnol. Oceanogr., 46, 465–470 [CrossRef] [Google Scholar]
  5. Cyberski J. 1993. Hydrologia zlewiska i morfometria zatoki. Korzeniewski K., Zatoka Pucka. Gdańsk: Instytut Oceanografii Uniwersytetu Gdańskiego. 40 [Google Scholar]
  6. Dojlido, J., 1987. Chemia wody, Arkady, Warszawa [Google Scholar]
  7. Gajkowska-Stefańska L., Guberski S., Gutowski W., Mamak Z., Szperliński Z. 2007, Laboratoryjne badania wody, ścieków i osadów ściekowych, Oficyna Wydawnicza Politechniki Gdańskiej, 92–96, 113–117, 181–187 [Google Scholar]
  8. Korzeniewski K. 1994. Zatoka Pucka. Inst. Ocean. UG. [Google Scholar]
  9. Krall, L., Trezzi G., Garcia-Orellana J., Rodellas V., Mörth C. M., Andersson, P. 2017. Submarine groundwater discharge at Forsmark, Gulf of Bothnia, provided by Ra isotopes. Mar. Chem., 196, 162–172. [CrossRef] [Google Scholar]
  10. Kryza, J., Kryza H. 2006. The analytic and model estimation of the direct groundwater flow to Baltic Sea on the territory of Poland. Geologos 10, 154–165. [Google Scholar]
  11. Moore WS, 2010. The Effect of Submarine Groundwater Discharge on the Ocean. Annu. Rev. Mar. Sci., 2, 59–88. [Google Scholar]
  12. Nowacki J.. 1993a. Morphometric characteristic of Puck Bay, [in:] Puck Bay, Eds. Korzeniewski K., Fundacja Rozwoju Uniwersytetu Gdańskiego, Gdańsk, 71–78. [Google Scholar]
  13. Nowacki J. 1993. Thermics, salinity and density of water, [in:] Puck Bay, K.Korzeniewski (ed.), Fundacja Rozwoju Uniwersytetu Gdańskiego, Gdańsk, 79–111. [Google Scholar]
  14. Oberdorfer JA, Valentino MA, Smith SV, 1990. Groundwater contribution to the nutrient budget of Tomas Bay, California. Biogeochemistry 10, 199–216. [CrossRef] [Google Scholar]
  15. Pempkowiak, J., Szymczycha B., Kotwicki L. 2011. Podwodny dopływ podziemny do morza Bałtyckiego. Rocznik Ochrona Środowiska, 12, 1, 17–32. [Google Scholar]
  16. Piekarek-Jankowska H., Bolałek J. 1992. Jon chlorkowy w wodach porowych osadów dennych Zatoki Puckiej. Wyd. UG, Gdańsk. [Google Scholar]
  17. Piekarek-Jankowska H. 1994. Zatoka Pucka jako obszar drenażu wód podziemnych. Wyd. UG, Gdańsk. [Google Scholar]
  18. Piekarek-Jankowska H., Matciak M., Nowacki J. 1994. Salinity variations as an effect of groundwater seepage through the seabed (Puck Bay. Poland).Oceanologia, 36, 1, 33–46. [Google Scholar]
  19. Piekarek-Jankowska H. 2007. Podmorski drenaż wód podziemnych gdańskiego system wodonośnego: Gdański system wodonośny. Edited by Kozerski B, 2010. Wydawnictwo Politechniki Gdańskiej, Gdańsk, Poland, 34–49. [Google Scholar]
  20. Peltonen, K., 2002. Direct Groundwater Inflow to the Baltic Sea. TemaNord, Nordic Councils of Ministers, Copenhagen, Holand, 79. [Google Scholar]
  21. Sadurski A. 1987. Warunki hydrogeologiczne i hydrochemiczne Mierzei Helskiej, Geol. Q., 1987, 31 (4), 767–782. [Google Scholar]
  22. Slomp, C.P., Van Cappellen P. 2004. Nutrient inputs to the coastal ocean through submarine groundwater discharge: controls and potential impact. J. Hydrol., 295, 64–86. [CrossRef] [Google Scholar]
  23. Szczepaniak W. 2011. Metody instrumentalne w analizie chemicznej. Wydawnictwo Naukowe PWN, Warszawa. [Google Scholar]
  24. Szymczycha, B., Vogler S., Pempkowiak J.2012. Nutrient fluxes via submarine groundwater discharge to the Bay of Puck, Southern Baltic, Sci. Total Environ., 438, 2012, 86–93. [Google Scholar]
  25. Szymczycha, B., Maciejewska A., Winogradow A., Pempkowiak J. 2014. Could submarine groundwater discharge be a significant carbon source to the southern Baltic Sea?, Oceanologia, 56, 327–347. [CrossRef] [Google Scholar]
  26. Szymczycha, B., Kroeger K. D., Pempkowiak J. 2016. Significance of groundwater discharge along the coast of Poland as a source of dissolved metals to the southern Baltic Sea, Mar. Pollut. Bull., 109, 1, 151–162. [CrossRef] [PubMed] [Google Scholar]
  27. Urbański J., Grusza G., Chlebus N. 2007. Fizyczna typologia dna Zatoki Gdańskiej. Gdynia: Pracownia Geoinformacji Zakładu Oceanografii Fizycznej, Instytut Oceanografii UG. 8. [Google Scholar]
  28. Uścinowicz Sz., Miotk-Szpiganowicz G. 2011. The Baltic Sea: Location, Division and Catchment Area: Geochemistry of Baltic Sea Surface and Sediments. (ed) Uścinowicz Sz, 2011. Polish Geological Institute-National Research Institute, Warsaw, Poland, 13–17. [Google Scholar]
  29. Valiela, I., Bowen J.L., Kroeger K. D. 2002. Assesment of models for estimation of land-derived nitrogen loads to shallow estuaries. Appl. Geochem., 17, 935–953. [CrossRef] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.