Open Access
Issue
E3S Web Conf.
Volume 60, 2018
Ukrainian School of Mining Engineering
Article Number 00007
Number of page(s) 11
DOI https://doi.org/10.1051/e3sconf/20186000007
Published online 16 October 2018
  1. Mykhailov, V. (2016). Prospection and estimation of unconventional hydrocarbon deposits in Ukraine. Visnyk of Taras Shevchenko National University of Kyiv. Geology, 2(73), 38–45. https://doi.org/10.17721/1728-2713.73.06 [CrossRef] [Google Scholar]
  2. Samoilov, V.V. (2017). Planning of the industrial and hydrogeological research at the final stage of hydrocarbon deposits development. Visnyk of V.N Karazin Kharkiv National University – Series Geology Geography Ecology, (46), 45–49. [Google Scholar]
  3. Naumko, I., Kurovets’, I., Zubyk, M., Batsevych, N., Sakhno, B., & Chepusenko, P. (2017). Hydrocarbon compounds and plausible mechanism of gas generation in “shale” gas prospective Silurian deposits of Lviv paleozoic depression. Geodynamics, 1(22), 26–41. https://doi.org/10.23939/jgd2017.01.026 [Google Scholar]
  4. Petlovanyi, M.V., Lozynskyi, V.H., Saik, P.B., & Sai, K.S. (2018). Modern experience of lowcoal seams underground mining in Ukraine. International Journal of Mining Science and Technology, 1–7. https://doi.org/10.1016/j.ijmst.2018.05.014 [Google Scholar]
  5. Bondarenko, V., Tabachenko, M., & Wachowicz, J. (2010). Possibility of production complex of sufficient gasses in Ukraine. New Techniques and Technologies in Mining – Proceedings of the School of Underground Mining, 113–119. https://doi.org/10.1201/b11329-19 [CrossRef] [Google Scholar]
  6. Saik, P., Petlovanyi, M., Lozynskyi, V., Sai, K., & Merzlikin, A. (2018). Innovative approach to the integrated use of energy resources of underground coal gasification. Solid State Phenomena, (277), 221–231. https://doi.org/10.4028/www.scientific.net/ssp.277.221 [CrossRef] [Google Scholar]
  7. Bondarenko, V., Lozynskyi, V., Sai, K., & Anikushyna, K. (2015). An overview and prospectives of practical application of the biomass gasification technology in Ukraine. New Developments in Mining Engineering 2015: Theoretical and Practical Solutions of Mineral Resources Mining, 27–32. https://doi.org/10.1201/b19901-6 [CrossRef] [Google Scholar]
  8. Pedchenko, M., Pedchenko, L., Nesterenko, T., & Dyczko, A. (2018). Technological solutions for the realization of NGH-technology for gas transportation and storage in gas hydrate form. Solid State Phenomena, (277), 123–136. https://doi.org/10.4028/www.scientific.net/ssp.277.123 [CrossRef] [Google Scholar]
  9. Bondarenko, V.I., Kharin, Ye.N., Antoshchenko, N.I., & Gasyuk, R.L. (2013). Basic scientific positions of forecast of the dynamics of methane release when mining the gas bearing coal seams. Naukovyi Visnyk Natsionalnoho Hirnychoho Universytetu, (5), 24–30. [Google Scholar]
  10. Bondarenko, V., Kovalevska, I., Astafiev, D., & Malova, O. (2018). Examination of phase transition of mine methane to gas hydrates and their sudden failure – Percy Bridgman’s effect. Solid State Phenomena, (277), 137–146. https://doi.org/10.4028/www.scientific.net/ssp.277.137 [CrossRef] [Google Scholar]
  11. Pedchenko, L., Niemchenko, K., Pedchenko, N., & Pedchenko, M. (2018). Use of alternative energy sources to improve the efficiency of natural gas hydrate technology for gas offshore deposits transportation. Mining of Mineral Deposits, 12(2), 122–131. https://doi.org/10.15407/mining12.02.122 [CrossRef] [Google Scholar]
  12. Bondarenko, V., Sai, K., Prokopenko, K., & Zhuravlov, D. (2018). Thermodynamic and geomechanical processes research in the development of gas hydrate deposits in the conditions of the Black Sea. Mining of Mineral Deposits, 12(2), 104–115. https://doi.org/10.15407/mining12.02.104 [CrossRef] [Google Scholar]
  13. Bondarenko, V.I., & Sai, K.S. (2018). Process pattern of heterogeneous gas hydrate deposits dissociation. Naukovyi Visnyk Natsionalnoho Hirnychoho Universytetu, (2), 21–28. https://doi.org/10.29202/nvngu/2018-2/4 [CrossRef] [Google Scholar]
  14. Melnikov, V., & Gennadinik, V. (2018). Cryodiversity: the world of cold on the Earth and in the solar system. Philosophy and Cosmology, (20), 43–54. https://doi.org/10.29202/phil-cosm/20/4 [CrossRef] [Google Scholar]
  15. Mohebbi, V., & Behbahani, R.M. (2014). Experimental study on gas hydrate formation from natural gas mixture. Journal of Natural Gas Science and Engineering, (18), 47–52. https://doi.org/10.1016/j.jngse.2014.01.016 [CrossRef] [Google Scholar]
  16. Hanushevych, K., & Srivastava, V. (2017). Coalbed methane: places of origin, perspectives of extraction, alternative methods of transportation with the use of gas hydrate and nanotechnologies. Mining of Mineral Deposits, 11(3), 23–34. https://doi.org/10.15407/mining11.03.023 [CrossRef] [Google Scholar]
  17. Bondarenko, V., Svietkina, O., & Sai, K. (2017). Study of the formation mechanism of gas hydrates of methane in the presence of surface-active substances. Eastern-European Journal of Enterprise Technologies, 5(6(89)), 48–55. https://doi.org/10.15587/1729-4061.2017.112313 [CrossRef] [Google Scholar]
  18. Farhang, F. (2014). Kinetics of the formation of CO2 hydrates in the presence of sodium halides and hydrophobic fumed silica nanoparticles. PhD Thesis. Queensland: The University of Queensland. https://doi.org/10.14264/uql.2014.385 [Google Scholar]
  19. Ganji, H., Manteghian, M., & Rahimi Mofrad, H. (2007). Effect of mixed compounds on methane hydrate formation and dissociation rates and storage capacity. Fuel Processing Technology, 88(9), 891–895. https://doi.org/10.1016/j.fuproc.2007.04.010 [CrossRef] [Google Scholar]
  20. Najibi, H., Mirzaee Shayegan, M., & Heidary, H. (2015). Experimental investigation of methane hydrate formation in the presence of copper oxide nanoparticles and SDS. Journal of Natural Gas Science and Engineering, (23), 315–323. https://doi.org/10.1016/j.jngse.2015.02.009 [CrossRef] [Google Scholar]
  21. Brown, T. D., & Taylor, C. E. (2013). Rapid gas hydrate formation process. Patent No. 8354565, USA. [Google Scholar]
  22. Kumar, A., Bhattacharjee, G., Kulkarni, B. D., & Kumar, R. (2015). Role of surfactants in promoting gas hydrate formation. Industrial & Engineering Chemistry Research, 54(49), 12217–12232. https://doi.org/10.1021/acs.iecr.5b03476 [CrossRef] [Google Scholar]
  23. Dholabhai, P.D., Kalogerakis, N., & Bishnoi, P.R. (1993). Kinetics of methane hydrate formation in aqueous electrolyte solutions. The Canadian Journal of Chemical Engineering, 71(1), 68–74. https://doi.org/10.1002/cjce.5450710110 [CrossRef] [Google Scholar]
  24. Kalacheva, L.P., Rozhin, I.I., & Fedorova, A.F. (2016). Izuchenie zavisimosti processov obrazovaniya i razlozheniya gidratov prirodnogo gaza ot himicheskoy prirody rastvorov elektrolitov, imitiruyushchih plastovye flyuidy. Mezhdunarodniy Zhurnal Prikladnyh i Fundamental’nyh Issledovaniy, (8-4), 565–569. [Google Scholar]
  25. Kalacheva, L.P., & Rozhin, I.I. (2017). The influence of the chloride-calcium-type water composition on the properties of natural gas hydrates. Neftegazovaya Geologiya. Teoriya i Praktika, 12(3). https://doi.org/10.17353/2070-5379/25_2017 [CrossRef] [Google Scholar]
  26. Lang, X., Fan, S., & Wang, Y. (2010). Intensification of methane and hydrogen storage in clathrate hydrate and future prospect. Journal of Natural Gas Chemistry, 19(3), 203–209. https://doi.org/10.1016/s1003-9953(09)60079-7 [CrossRef] [Google Scholar]
  27. Holzammer, C., Finckenstein, A., Will, S., & Braeuer, A.S. (2016). How sodium chloride salt inhibits the formation of CO2 gas hydrates. The Journal of Physical Chemistry B, 120(9), 2452–2459. https://doi.org/10.1021/acs.jpcb.5b12487 [CrossRef] [PubMed] [Google Scholar]
  28. Fan, S.-S., & Guo, T.-M. (1999). Hydrate formation of CO2-rich binary and quaternary gas mixtures in aqueous sodium chloride solutions. Journal of Chemical & Engineering Data, 44(4), 829–832. https://doi.org/10.1021/je990011b [CrossRef] [Google Scholar]
  29. Guo T.-M., & Qiu, J.-H. (2002). Kinetic of methane hydrate formation in pure water and ingibitor containing systems. Chinese Journal of Chemical Engineering, 10(3), 490–497. [Google Scholar]
  30. Svietkina, O. (2013). Receipt of coagulant of water treatment from radio-active elements. Annual Scientific-Technical Collection – Mining of Mineral Deposits 2013, 227–230. https://doi.org/10.1201/b16354-42 [Google Scholar]
  31. Svietkin, Yu.V., Riabenko, V.V., Volkov, M.F., & Varlan, K.E. (1984). Sposob stymulyrovanyia rosta zooplanktona. Patent No. 1137603, USSR. [Google Scholar]
  32. Manzhai, V.N., Konovalov, K.B., & Kazarian, M.A. (2017). Model povedeniya makromolekul v turbulentnom potoke i eye analiticheskiye sledstviya. Kratkiye Soobshcheniya po Fizike FIAN, (12), 3–6. [Google Scholar]
  33. Ovchynnikov, M., Ganushevych, K., & Sai, K. (2013). Methodology of gas hydrates formation from gaseous mixtures of various compositions. Annual Scientific-Technical Collection – Mining of Mineral Deposits 2013, 203–205. https://doi.org/10.1201/b16354-37 [Google Scholar]
  34. Bondarenko, V., Svietkina, O., & Sai, K. (2018). Effect of mechanoactivated hemical additives on the process of gas hydrate formation. Eastern-European Journal of Enterprise Technologies, 1(6(91)), 17–26. https://doi.org/10.15587/1729-4061.2018.123885 [CrossRef] [Google Scholar]
  35. Svetkina, Ye.Yu. (2013). Intensification of concentration process through minerals vibroactivation. Naukovyi Visnyk Natsionalnoho Hirnychoho Universytetu, (2), 38–43. [Google Scholar]
  36. Fuoss, R.M. (1948). Viscosity function for polyelectrolytes. Journal of Polymer Science, 3(4), 603–604. https://doi.org/10.1002/pol.1948.120030414 [CrossRef] [Google Scholar]
  37. Yuan, L., Dougherty, T.J., & Stivala, S.S. (1972). A semi-empirical approach to the viscosities of polyelectrolyte solutions. Journal of Polymer Science Part A-2: Polymer Physics, 10(1), 171–189. https://doi.org/10.1002/pol.1972.160100113 [CrossRef] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.