Open Access
Issue
E3S Web Conf.
Volume 60, 2018
Ukrainian School of Mining Engineering
Article Number 00023
Number of page(s) 9
DOI https://doi.org/10.1051/e3sconf/20186000023
Published online 16 October 2018
  1. Khomenko, O., Sudakov, A., Malanchuk, Z., & Malanchuk, Ye. (2017). Principles of rock pressure energy usage during underground mining of deposits. Naukovyi Visnyk Natsionalnoho Hirnychoho Universytetu, (2), 35–43. [Google Scholar]
  2. Falshtynskyi, V.S., Dychkovskyi, R.O., Saik, P.B., Lozynskyi, V.H., & Cabana, E.C. (2017). Formation of thermal fields by the energy-chemical complex of coal gasification. Naukovyi Visnyk Natsionalnoho Hirnychoho Universytetu, (5), 36–42. [Google Scholar]
  3. Caceres, E., & Alca, J.J. (2016). Rural Electrification Using Gasification Technology: Experiences and Perspectives. IEEE Latin America Transactions, 14(7), 3322–3328. https://doi:10.1109/TLA.2016.7587637 [CrossRef] [Google Scholar]
  4. Ginzburg, A.I., & Zhemchuzhnikov, Yu.A. (1960). Osnovy petrologii ugley. Moskva: Izdatel’stvo Akademii nauk SSSR. [Google Scholar]
  5. Butuzova, L.F., Saranchuk, V.I., Gonchar, N.P., & Shurpach, V.I. (1992). Vozmozhnosti IKspektroskopii pri issledovanii prirodnykh ugley i produktov ikh termodestruktsii. Fizikokhimicheskie svoystva uglya, 20–32. [Google Scholar]
  6. Obukhov, A.A., Frolkov, G.D., & Artem’yev, V.B. (2000). Strukturno-khimicheskaya mekhanika ugley metamorficheskogo ryada plastov, opasnykh po vnezapnym vybrosam uglya i gaza. Shakhty: YuRO AGN. [Google Scholar]
  7. Ye, R., Xiang, Ch., Lin, J., Peng, Zh., Huang, K., Yan, Zh., Cook, N.P., Samuel, E.L.G., Hwang, Ch., Ruan, G., Ceriotti, G., Raji, A.-R.O., Marti, A.A., & Tour, J.M. (2013). Coal as an abundant source of graphene quantum dots. Nature communications, 4(2943). https://doi.org/10.1038/ncomms3943 [Google Scholar]
  8. Jin, Ch., Lan, H., Peng, L., Suenaga, K., & Iijima, S. (2009). Deriving carbon atomic chains from grapheme. Phys. Rev. Lett., 102, 205501. https://doi:10.1103/PhysRevLett.102.205501 [NASA ADS] [CrossRef] [PubMed] [Google Scholar]
  9. Yanovskiy, Yu.G., Nikitina, Ye.A., Karnet, Yu.N., & Nikitin, S.M. (2010). Modelirovanie deformatsii i razrusheniya grafena: razmernyy effekt, vliyanie defektov i modifikatsii poverkhnosti. Fizicheskaya mezomekhanika, 5(13), 139–147. [Google Scholar]
  10. Sobolev, V.V. (2003). K voprosu o prirode obrazovaniya vybrosoopasnykh ugley. Sbornik nauchnykh trudov Natsionalnogo gornogo universiteta, 1(17), 505–511. [Google Scholar]
  11. Antoshchenko, N.I., Radchenko, A.G., Ashikhmin, V.D., & Radchenko, A.A. (2015). Osobennosti proyavleniya vybrosoopasnosti ugley v ryadu metamorfizma. Zbirnyk naukovykh prats Donetskoho natsinalnoho tekhnichnoho universytetu, (1), 14–21. [Google Scholar]
  12. Pivnyak, G.G., Sobolev, V.V., & Filippov, A.O. (2012). Phase transformations in bituminous coals under the influence of weak electric and magnetic fields. Naukovyi Visnyk Natsionalnoho Hirnychoho Universytetu, (5), 43–49. [Google Scholar]
  13. Soboliev, V., Bilan, N., & Samovik, D. (2013). Magnetic stimulation of transformations in coal. Annual Scientific-Technical Collection – Mining of Mineral Deposits, 221–225. https://doi.org/10.1201/b16354-41 [CrossRef] [Google Scholar]
  14. Sobolev, V.V., Bilan, N.V., & Khalimendik, A.V. (2017). On formation of electrically conductive phases under electro-thermal activation of ferruginous carbonates. Naukovyi Visnyk Natsionalnoho Hirnychoho Universytetu, 4(160), 27–35. [Google Scholar]
  15. Sobolev, V.V., & Bondarenko, E.V. (1993). The change in granulometric composition of diamond crystals when treating synthesis products in electromagnetic field. Sverkhtverdye materialy, (4),57–58. [Google Scholar]
  16. Sobolev, V.V. (2010). Synthesis of nanosized phases from an atomic carbon. Advanced Materials Research, 123-125; 791–794. [CrossRef] [Google Scholar]
  17. Khrenkova, T.M., & Chubarova, M.A. (1973). Mekhanokhimiya ugley. Khimiya tverdogo topliva, (1), 62–65. [Google Scholar]
  18. Ul’yanova, Ye.V. (2012). Strukturnye i kompozitsionnye perestroyki v iskopayemykh uglyakh. Saarbrucken: Palmarium Academic Publishing. [Google Scholar]
  19. Molchanov, A.N. (2011). Metodicheskie osobennosti issledovaniya protsessa desorbtsii metana iz iskopayemykh ugley. Geotekhnichna mekhanika, (94), 133–139. [Google Scholar]
  20. Sobolev, V., Rudakov, D., Stefanovych, L., & Jach, K. (2017). Fizicheskoe i matematicheskoe modelirovanie usloviy vybrosa uglya i gaza. Mining of Mineral Deposits, 11(3), 40–49 https://doi.org/10.15407/mining11.03.040 [CrossRef] [Google Scholar]
  21. Panchenko, Ye.M. (2009). Elektretnnoe sostoyanie v oksidakh. Moskva: Fizmatlit. [Google Scholar]
  22. Electrets. (1980). Ed. G.M. Sessler. Berlin; Heidelberg; New York: Springer-Verlag. [Google Scholar]
  23. Alekseyev, A.D., Molchanov, A.N., Ul’yanova, Ye.V., Zimina, S.V., & Pichka, T.V. (2012). Preobrazovanie lokal’noy struktury iskopayemykh ugley v rezul’tate vybrosa i pod deystviem vysokikh davleniy. Fizika i tekhnika vysokikh davleniy, 22(1), 122–129. [Google Scholar]
  24. Alekseyev, A.D., Ul’yanova, Ye.V., Trachevskiy, V.V., Ivashchuk, L.I., & Zimina, S.V. (2010). Primenenie metodov kombinatsionnogo rasseyaniya i yadernogo magnitnogo rezonansa dlya issledovaniya genezisa struktury uglerodnykh nanomaterialov prirodnogo proiskhozhdeniya. Fizika i tekhnika vysokikh davleniy, 20(3), 126–140. [Google Scholar]
  25. Sobolev, V.V. (2010). Zakonomernosti izmeneniya energii khimicheskoy svyazi v pole tochechnogo zaryada. Dopovidi Natsionalnoi Akademii Nauk Ukrainy, (4), 88–95. [Google Scholar]
  26. Sobolev, V.V., Baskevich, A.S., Bilan, N.V., & Filippov, A.O. (2011). Ustoychivost’ nanostruktury kamennogo uglya pri vozdeystvii elektricheskogo toka. Naukovyi Visnyk Natsionalnoho Hirnychoho Universytetu, (6), 80–84. [Google Scholar]
  27. Alekseyev, A.D., Ul’yanova, Ye.V., Trachevskiy, V.V., Ivashchuk, L.I., Zimina, S.V., Borshch, T.V., & Shpak, A.P. (2010). Preobrazovanie struktury iskopayemykh ugley v geomasshtabnom tekhnogeneze. Fiziko-tekhnicheskie problemy gornogo proizvodstva, (13), 48–59. [Google Scholar]
  28. Pivnyak, G., Dychkovskyi, R, Bobyliov, O., Cabana, C.E. & Smoliński, A. (2018). Mathematical and Geomechanical Model in Physical and Chemical Processes of Underground Coal Gasification. Solid State Phenomena, (277), 1–16. https://doi.org/10.4028/www.scientific.net/SSP.277.1 [CrossRef] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.