Open Access
Issue
E3S Web Conf.
Volume 60, 2018
Ukrainian School of Mining Engineering
Article Number 00024
Number of page(s) 8
DOI https://doi.org/10.1051/e3sconf/20186000024
Published online 16 October 2018
  1. Dmitriev, A.P., Goncharov, S.A., & Zilbershmidt, M.G. (2011). Contemporary problems of selective and energy saving rock destruction. Gornyy informatsionno-analiticheskiy byulleten, (1), 169–184. [Google Scholar]
  2. Bulat A., Voloshyn, O., & Zhevzhik, O. (2013). Plasma reactor for thermochemical preparation of coal-air mixture before its burning in the furnaces. Annual Scientific-Technical Collection – Mining of Mineral Deposits, 39–44. https://doi.org/10.1201/b16354-9 [CrossRef] [Google Scholar]
  3. Hoser, D., & von Rohr, P.R. (2018). Experimental heat transfer study of confined flame jet impinging on a flat surface. Experimental Thermal and Fluid Science, (91), 166–174. http://dx.doi.org/10.1016/j.expthermflusci.2017.10.014 [CrossRef] [Google Scholar]
  4. Kant, M., Rossi, E., Madonna, C., HÖser, D., & von Rohr, P.R. (2017). A theory on thermal spalling of rocks with a focus on thermal spallation drilling. Journal of Geophysical Research: Solid Earth, 122(3), 1805–1815. http://dx.doi.org/10.1002/2016JB013800 [Google Scholar]
  5. Kant, M.A., Rossi, E., Duss, J., Amann, F., Saar, M.O., & von Rohr, P.R. (2018). Demonstration of thermal borehole enlargement to facilitate controlled reservoir engineering for deep geothermal, oil or gas systems. Applied Energy, (212), 1501–1509. http://dx.doi.org/10.1016/j.apenergy.2018.01.009 [CrossRef] [Google Scholar]
  6. Rauenzahn, R., & Tester, J. (1989). Rock failure mechanisms of flame-jet thermal spallation drilling theory and experimental testing. International Journal of Rock Mechanics and Mining Sciences & Geomechanics Abstracts, 26(5), 381–399. http://dx.doi.org/10.1016/01489062(89)90935-2 [CrossRef] [Google Scholar]
  7. Rauenzahn, R.M., & Tester, J.W. (1991). Numerical simulation and field testing of flame-jet thermal spallation drilling – 2. Experimental verification. International Journal of Heat and Mass Transfer, 34(3), 809–818. http://dx.doi.org/10.1016/0017-9310(91)90127-Z [CrossRef] [Google Scholar]
  8. Wilkinson, M.A., & Tester, J.W. (1993). Experimental measurement of surface temperatures during flame-jet induced thermal spallation. Rock Mechanics and Rock Engineering, 26(1), 29–62. http://dx.doi.org/10.1007/BF01019868 [CrossRef] [Google Scholar]
  9. Yan, C., Deng, J., Yu, B., Li, W., Chen, Z., Hu, L., & Li, Y. (2014). Borehole stability in high-temperature formations. Rock Mechanics and Rock Engineering, 47(6), 2199–2209. http://dx.doi.org/10.1007/s00603-013-0496-2 [CrossRef] [Google Scholar]
  10. Yanchenko, G.A., Zharovkin, A.V., & Bulycheva, E.S. (2003). About the parameters of the thermal reaming of blastholes in the ferrous quartzites of Kostomuksha GOK at the use of emulsive explosives of “Sibirit-1200” type. Gornyy informatsionno-analiticheskiy byulleten’, (9), 1–5. [Google Scholar]
  11. Babayan, E.V., & Chernenko, A.V. (2016). Inzhenerne raschety pri burenii. Moskva: Infra-Inzheneriya. [Google Scholar]
  12. Osipov, P.F., & Skryabin, G.F. (2001). Optimizatsiya rezhimov bureniya gidromonitornymi sharoshechnymi dolotami. Yaroslavl’: Medium-Press. [Google Scholar]
  13. Gulin, V.V., & Ustimenko, T.A. (2014). Designing of generators of impulse jets on the basis of structural synthesis. Vostochno-Yevropeyskiy zhurnal peredovykh tekhnologiy, 4(7), 38–45. [Google Scholar]
  14. Plugin, A.I. (2001). Sposob obrazovaniya skvazhin i vyrabotok v geologicheskikh strukturakh. Patent No. 2168598, Russian Federation. [Google Scholar]
  15. Bulat, A.F., Makeiev, S.Yu., Osinnii, V.Ya., & Yemelianenko, V.I. (2014). Ustanovka stvorennia rezervuarnoi porozhnyny v mitsnykh skalnykh porodakh. Patent No. 94670, Ukraine. [Google Scholar]
  16. Gizatullin, S.A., & Dautov, G.Yu. (1997). Ustanovka elektrodugovogo plazmobura. Patent No. 2100602, Russian Federation. [Google Scholar]
  17. Lazhenitsyn, A.I., & Smirnov, A.A. (2012). Plazmotron uglovoy. Patent No. 2464746, Russian Federation. [Google Scholar]
  18. Mulyev, Yu.V. (2003). Manometry. Moskva: MEI. [Google Scholar]
  19. Andreev, V.V., Chekhlova, T.K., & Chuprov, D.V. (2008) Izmereniya i pribory v fizicheskom eksperimente. Moskva: RUDN. [Google Scholar]
  20. Tarasova, V.N., Malynovskyi, A.S., & Rybak, M.F. (2006). Metrolohiia, standartyzatsiia i sertyfikatsiia. Kyiv: Tsentr navchalnoi literatury. [Google Scholar]
  21. Bogoslovskiy, S.V. (2001). Fizicheskie svoystva gazov i zhidkostey. Sankt-Petersburg: SPbGUAP. [Google Scholar]
  22. Voloshyn, O.I., Potapchuk, I.Yu., & Zhevzhyk, O.V. (2018). Influence of the heat-transfer stream pressure on the surface of the rock in a process of the thermal reaming of the borehole. Naukovyi Visnyk Natsionalnoho Hirnychoho Universytetu, 164(2), 53–59. http://dx.doi.org/10.29202/nvngu/2018-2/6 [CrossRef] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.