Open Access
E3S Web Conf.
Volume 63, 2018
Seminary on Geomatics, Civil and Environmental Engineering (2018 BGC)
Article Number 00011
Number of page(s) 5
Published online 14 November 2018
  1. K. V. Prasad, Digital Terrain Modeling: Principles and Methodology. The Photogrammetric Record, 24: 296-297 (2009) DOI: 10.1111/j.1477-9730.2009.00545_2.x. [CrossRef] [Google Scholar]
  2. C. Suchocki, J. Katzer, J.J. Rapiński, Terrestrial Laser Scanner as a Tool for Assessment of Saturation and Moisture Movement in Building Materials. Period Polytech Civ Eng, 1-6. (2018) DOI:10.3311/PPci.11406 [Google Scholar]
  3. A. Zięba, P. Ramza, Standard deviation of the mean of autocorrelated observations estimated with the use of the autocorrelation function estimated from the data, Metrol. & Meas. Syst., 18, pp. 529-542 (2011) [Google Scholar]
  4. ISO/IEC Guide 98-3:2008, Uncertainty of measurement - Part 3: Guide to the expression of uncertainty in measurement (GUM:1995) [Google Scholar]
  5. The Expression of Uncertainty and Confidence in Measurement, M3003 Edition 3 (2012) [Google Scholar]
  6. S. Bell, A Beginner's Guide to Uncertainty of Measurement (1999) [Google Scholar]
  7. J. Estornell, L. A. Ruiz, B. Velázquez-Martí, T. Hermosilla, Analysis of the factors affecting LiDAR DTM accuracy in a steep shrub area, International Journal of Digital Earth, 4:6, 521-538 (2010) DOI: 10.1080/17538947.2010.533201 [CrossRef] [Google Scholar]
  8. K. Stereńczak, M. Zasada, M. Brach, The Accuracy Assessment of DTM Generated from LIDAR Data for Forest Area - a Case Study for Scots Pine Stands in Poland. Baltic Forestry, 19, 2, pp. 252-262 (2013) [Google Scholar]
  9. Z. Li, Q. Zhu, C. M. Gold, Digital terrain modeling - principles and methodology. CRC Press, ISBN 978-0-415-32462-5, pp. I-XVI, 1-323 (2005) [Google Scholar]
  10. Z. L. Li, Sampling Strategy and Accuracy Assessment for Digital Terrain Modelling. Ph.D. thesis, The University of Glasgow (1990) [Google Scholar]
  11. Z. L. Li, Variation of the accuracy of digital terrain models with sampling interval. Photogrammetric Record, 14, 79, 113-128 pp. (1992) [CrossRef] [Google Scholar]
  12. W. Błaszczak-Bąk, New Optimum Dataset method in LiDAR processing. Acta Geodynamica et Geomaterialia, 13, 4(184), pp. 381-388 (2016) DOI: 10.13168/AGG.2016.0020 [Google Scholar]
  13. W. Błaszczak-Bąk, A, Sobieraj-Żłobińska, B. Wieczorek, The Optimum Dataset method - examples of applications, ES5 Web of Conferences, 26, 00005 (2018) [CrossRef] [Google Scholar]
  14. W. Błaszczak-Bąk, M. Poniewiera, A. Sobieraj-Żłobińska. M. Kowalik, Reduction of measurement data before Digital Terrain Model generation vs. DTM generalisation, Survey Review (2018) DOI: 10.1080/00396265.2018.1474685 [Google Scholar]
  15. W. Błaszczak-Bąk, A. Sobieraj-Żłobińska. M. Kowalik, The OptD-multi method in LiDAR processing. Measurement Science and Technology. 8, 7, 075009 (2017) DOI:10.1088/1361-6501/aa7444 [CrossRef] [Google Scholar]
  16. P. Axelsson, DEM generation from laser scanner data using adaptive TIN models, International Archives of Photogrammetry and Remote Sensing, Volume XXXIII, Part B4, Amsterdam, Netherlands:111-118 (2000) [Google Scholar]
  17. D. H. Douglas, T. K. Peucker, Algorithms for the reduction of the number of points required to represent a digitized line or its caricature. Canadian Cartographer, 10, 2, pp. 112-122 (1973) [CrossRef] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.