Open Access
E3S Web Conf.
Volume 63, 2018
Seminary on Geomatics, Civil and Environmental Engineering (2018 BGC)
Article Number 00012
Number of page(s) 6
Published online 14 November 2018
  1. R. Polvara, S. Sharma, J. Wan, A. Manning, R. Sutton, Obstacle avoidance approaches for autonomous navigation of unmanned surface vehicles, The Journal of Navigation, 71 (2017) [Google Scholar]
  2. A. Romano, P. Duranti, Autonomous unmanned surface vessels for hydrographic measurement and environmental monitoring, FIG Working Week, Rome, (2012) [Google Scholar]
  3. Y. Aotani, T. Ienaga, N. Machinaka, Y. Sadakuni, R. Yamazaki, Y. Hosoda, R. Sawahashi Y. Kuroda, Development of autonomous navigation system using 3D map with geometric and semantic information, Journal of Robotics and Mechatronics, 29, 4 (2017) [Google Scholar]
  4. X. Meng, H. Wang, B. Liu, A robust vehicle localization approach based on GNSS/ IMU/ DMI/ LiDAR sensor fusion for autonomous vehicles, Sensors, 17, 9 (2017) [Google Scholar]
  5. Z. Liu, Y. Zhang, X. Yu, C. Yuan, Unmanned surface vehicles: an overview of developments and challenges, Annual Reviews in Control, 41 (2016) [Google Scholar]
  6. UMRR Type 42 Antenna Data Sheet [Google Scholar]
  7. P. Wei, L. Cagle, T. Reza, J. Ball, J. Gafford, LiDAR and camera detection fusion in a real-time industrial multi-sensor collision avoidance system, Electronics 7, 6 (2018) [CrossRef] [Google Scholar]
  8. Velodyne VLP-16 Sample Data [Google Scholar]
  9. C.-H. Tsai, Y.-C. Lin, An accelerated image matching technique for UAV orthoimage registration, ISPRS Journal of Photogrammetry and Remote Sensing, 128 (2017) [Google Scholar]
  10. ZENMUSE X5S Specification [Google Scholar]
  11. A. Stateczny, Neural manoeuvre detection of the tracked target in ARPA systems, Proceedings CAMS 2001, Glasgow, (2001) [Google Scholar]
  12. A. Stateczny, W. Kazimierski, Selection of GRNN network parameters for the needs of state vector estimation of manoeuvring target in ARPA devices, Photonics Applications in Astronomy, Communications, Industry, and High-Energy Physics Experiments IV, Wilga, (2005) [Google Scholar]
  13. W. Kazimierski and A. Stateczny, Optimization of multiple model neural tracking filter for marine targets, 13th International Radar Symposium (IRS), Warsaw, (2012) [Google Scholar]
  14. W. Kazimierski, G. Zaniewicz, A. Stateczny, Verification of multiple model neural tracking filter with ship's radar, 13th International Radar Symposium (IRS), Warsaw, (2012) [Google Scholar]
  15. W. Kazimierski, A. Stateczny, Fusion of data from AIS and tracking radar for the needs of ECDIS, Signal Processing Symposium Jachranka, Poland, (2013) [Google Scholar]
  16. J. Jo, Y. Tsunoda, B. Stantic et al.., A likelihood-based data fusion model for the integration of multiple sensor data: a case study with vision and Lidar sensors, Robot Intelligence Technology And Applications 4, 447, (2017) [Google Scholar]
  17. L. Jooho, W. Joohyun W., K. Nakwan, Obstacle avoidance and target search of an autonomous surface vehicle for 2016 maritime RobotX Challenge, IEEE OES International Symposium on Underwater Technology (UT), Busan, (2017) [Google Scholar]
  18. J. H. Mei, M. R. Arshad, COLREGs based navigation of riverine autonomous surface vehicle, IEEE 6TH International Conference on Underwater System Technology, Malaysia, 2016 [Google Scholar]
  19. A. Barton, E. Volna, control of autonomous robot using neural networks, Proceedings of the International Conference on Numerical Analysis and Applied Mathematics 2016 (ICNAAM-2016), Rhodes, 2016 [Google Scholar]
  20. B. Ko, H.J. Choi, C. Hong et al.., Neural network-based autonomous navigation for a homecare mobile mobot, 2017 IEEE International Conference On Big Data And Smart Computing (BIGCOMP), Jeju 2017 [Google Scholar]
  21. T. Praczyk, Neural anti-collision system for autonomous surface vehicle, Neurocomputing, 149 (2015) [Google Scholar]
  22. J. Lil, H. Bao, X. Han et al.., Real-time self-driving car navigation and obstacle avoidance using mobile 3D laser scanner and GNSS, Multimedia Tools and Applications, 76 (2016) [Google Scholar]
  23. P. Kolendo, R. Smierzchalski, Ship evolutionary trajectory planning method with application of polynomial interpolation, Activities in Navigation: Marine Navigation and Safety of Sea Transportation (2015) [Google Scholar]
  24. L. Kuczkowski, R. Smierzchalski, Termination functions for evolutionary path planning algorithm 19th International Conference on Methods and Models in Automation and Robotics (MMAR) Miedzyzdroje, (2014) [Google Scholar]
  25. L. Kuczkowski, R. Smierzchalski, Comparison of single and multi-population evolutionary algorithm for path planning in navigation situation, Symposium on Mechatronics Systems, Mechanics and Materials, Jastrzebia Gora, (2013) [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.